

الامتحان الوطني الموحد للبكالوريا السالك الدولية – خيار فرنسية الدورة الاستدراكية 2016 - عناصر الإجابة -

المملكة المفريبة وزارة التربية الولمنية والتكوين المهنس في المالالالالله ۲۱۱۵ ا ₹۵۱۱۵ ا ط

> المركز الوطني للتقويم والامتحانات والتوجيه

Chimie(7 points)				
Question	Eléments de réponse	Barème	Référence de la question dans le cadre de référence	
		Parti	e I	
1	$Q_{ri} = 4,5.10^{-2}$ Evolution du système dans le sens (2).	0,25	-Calculer la valeur du quotient de réaction Q _r d'un système chimique dans un état donnéDéterminer le sens d'évolution spontanée d'un système chimique.	
2	2 Schéma conventionnel de la pile + justification		-Schématiser une pile (schéma conventionnel, schéma) -Déterminer le sens de déplacement des porteurs de charges dans une pile en utilisant le critère d'évolution spontanée.	
3-1	Démarche, $ \left[Al_{aq}^{3+}\right]_f = 7,5.10^{-2} \text{ mol.} L^{-1} $	0,5 0,25	-Dresser le tableau d'avancement d'une réaction et l'exploiter. -Etablir la relation entre les quantités de	
3-2	Démarche $\Delta t = 8,685.10^4 \text{s} \approx 24 \text{h}$	0,5 0,25	matière des espèces formées ou consommées, l'intensité du courant et la durée de l'électrolyse. Utiliser cette relation pour déterminer d'autres grandeurs (l'avancement de réaction, variation de masse, volume d'un gaz).	

ä	الصفح
$\overline{}$. 2
4	

RR31F

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2016 – عناصر الإجابة - مادة: الفيزياء والكيمياء – مسلك العلوم الرياضية (أ) و (ب) – المسالك الدولية (خيار فرنسية)

	Partie II				
1-1	justification	0,25	Justifier le choix du matériel expérimental à utiliser : chauffage à reflux, distillation fractionnée, cristallisation, et filtration sous vide		
1-2	Equation de la réaction	0,5	-Écrire les équations des réactions d'estérification et d'hydrolyse.		
1-3-1	С	0,5	-Interpréter qualitativement la variation de la vitesse de réaction à l'aide d'une des courbes d'évolution tracées.		
1-3-2	Définition du temps de demi-réaction $t_{1/2}$ =6min	0,25 0,25	-Définir le temps de demi-réaction $t_{1/2}$. -Déterminer le temps de demi-réaction graphiquement ou en exploitant des résultats expérimentaux.		
1-3-3	Démarche r=84%	0,25 0 ,25	-Calculer le rendement d'une transformation chimique.		
2-1	Equation de la réaction	0,5	-Ecrire l'équation de la réaction modélisant une transformation acido-basique et identifier les deux couples intervenants.		
2-2	Démarche d'aboutissement à K≃0,25	0,5	-Déterminer la constante d'équilibre associée à l'équation d'une réaction acido-basique à l'aide des constantes d'acidité des couples en présence.		
2-3	$\tau = \frac{\sqrt{K}}{1 + \sqrt{K}}$	0,25 0,25	-Définir le taux d'avancement final d'une réaction et le déterminer à partir de données expérimentalesSavoir que, pour une transformation donnée, le taux d'avancement final dépend de la constante d'équilibre et de l'état initial du système.		
2-4	Démarche $pH = pK_{A1} + $ $log\left(\frac{1-\tau}{\tau}\right)$ $pH \simeq 4,5.$	0,25 0,25	-Ecrire et utiliser l'expression de la constante d'acidité K_A associée à l'équation de la réaction d'un acide avec l'eauConnaître la relation $pK_A = -\log K_A$ Déterminer le pH d'une solution aqueuse.		

Physique (13 points)						
Exercice Question Eléments de réponse			Barème	Référence de la question dans le cadre de référence		
1	4.4	1.	0.25			
	1-1	b	0,25	-Définir une onde mécanique et sa célérité.		
	1-2	1-2 Démarche ; N=40kHz 2x0,25 -Reconnaître une onde progr périodique et sa période. 1-3 Vérification de la valeur de la 0,5 -Définir une onde progressiv		-Reconnaître une onde progressive		
oints)	1-3			-Définir une onde progressive sinusoïdale, la période, la fréquence		
Ondes (2,25 points)	2-1	Aboutir à l'expression $\Delta t = \ell \left(\frac{1}{v_a} - \frac{1}{v_e} \right)$	0,5	et la longueur d'ondeExploiter la relation entre le retard temporel, la distance et la céléritéConnaître et exploiter la relation		
Ond	2-2	Démarche, $v_e \approx 1,49.10^3 \text{ m.s}^{-1}$	0,25 0,25	 λ=v.T . -Exploiter des documents expérimentaux et des données pour déterminer :une distance,un retard temporel, une célérité. 		

ž	الصفحا
$\overline{}$	<u> 3</u>
4	

RR31F

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2016 - عناصر الإجابة - مادة: الفيزياء والكيمياء - مسلك العلوم الرياضية (أ) و (ب) - المسالك الدولية (خيار فرنسية)

Exercice 2	Question	Eléments de réponse	Barème	Référence de la question dans le cadre de référence
	1-1	Aboutir à l'expression de C_e .	0,25	-Connaitre la capacité du condensateur équivalent des montages en série et en parallèle, et l'intérêt de chaque montage.
	1-2	Equation différentielle	0,5	-Etablir l'équation différentielle et vérifier sa solution lorsque le dipôle RC est soumis à un
	1-3	$A = \frac{C_1}{C_1 + C_2} . E = \frac{E.C_e}{C_2}$	0,25	échelon de tensionDéterminer l'expression de la tension $u_C(t)$ aux
		$\alpha = \frac{C_1 + C_2}{RC_1C_2} = \frac{1}{R.C_e}$	0,25	bornes du condensateur lorsque le dipôle RC est soumis à un échelon de tension, et en déduire l'expression de l'intensité du courant dans le circuit et l'expression de la charge du condensateur.
	1-4-1	a- E=12V	0,25	-Reconnaître et représenter les courbes de variation
		$b- u_2 = 8 V \cdot u_1 = 4 V$	2x0,25	en fonction du temps, de la tension $u_C(t)$ aux
	1-4-2	Aboutir à la valeur de C_1	0,5	bornes du condensateur et les différentes grandeurs qui lui sont liées, et les exploiter. Déterminer la capacité d'un condensateur
				graphiquement et par calcul.
ints)	2-1	Equation différentielle	0,5	-Etablir l'équation différentielle pour la tension aux bornes du condensateur ou pour sa charge $q(t)$ dans le cas d'un amortissement négligeable et vérifier sa
Electricité (5,25 points)				solution
té (5,				-Connaître et exploiter la relation $i = \frac{dq}{dt}$ pour un
rici				condensateur en convention récepteurConnaitre et exploiter la relation q = C.u.
lect				Connaître et exploiter l'expression de la tension
				$u = r.i + L.\frac{di}{dt}$ aux bornes d'une bobine en
				convention récepteur.
	2-2-1	Démarche ;	0,25	-Reconnaître et représenter les courbes de variation,
		$E_t = 6, 4.10^{-5} \text{ J}$	0,25	en fonction du temps, de l'intensité du courant $i(t)$ passant dans la bobine et les grandeurs qui lui sont
	2-2-2	Démarche ;	0,25 0,25	liées et les exploiter.
		$E_{\rm m} \approx 4, 1.10^{-5} \text{J}$	0,25	-Connaître et exploiter l'expression de l'énergie totale du circuit.
	1	$m = \frac{U_{\text{max}} - U_{\text{min}}}{U_{\text{max}} + U_{\text{min}}}$	0,25	-Connaître l'expression mathématique d'une tension sinusoïdale.
	2	$f_{p} = 160 \text{ kHz}$;	0,25	-Savoir qu'une modulation d'amplitude est de rendre
		$f_s = 10 \text{ kHz}$	0,25	l'amplitude du signal modulé fonction affine de la tension modulante.
		m-0.5		-Connaître les conditions permettant d'obtenir une
		m=0,5; bonne modulation.	0,25	modulation d'amplitude et une détection
		oomie modulation.	0,25	d'enveloppe de bonne qualité.
				-Exploiter les différentes courbes obtenues
				expérimentalement.

ä	الصفد
$\overline{}$	4
4	

RR31F

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2016 - عناصر الإجابة - مادة: الفيزياء والكيمياء - مسلك العلوم الرياضية (أ) و (ب) - المسالك الدولية (خيار فرنسية)

Exercice 3		Question	Eléments de réponse	Barème	Référence de la question dans le cadre de référence
		1-1	Aboutir à l'équation de la trajectoire	0,5	-Connaitre et exploiter les relations $\vec{F} = q\vec{E}$ et $\vec{E} = \frac{U}{d}$
	Partie I	1-2	Aboutir à l'expression de O'M	0,5	-Appliquer la deuxième loi de Newton dans le cas d'une particule chargée pour : établir les équations différentielles du mouvement. établir les équations horaires du mouvement et les exploiter ; trouver l'équation de la trajectoire et l'exploiter pour calculer la déflexion électrostatique.
	Pa	2-1	$\vec{B} = -\vec{B}\vec{k}$	0,25	-Connaître les caractéristiques de la force de Lorentz et la règle pour déterminer son sens.
		2-2	$V = V_0 = \frac{E}{B}$	0,5	-Appliquer la deuxième loi de Newton dans le cas d'une particule chargée se trouvant dans un champ magnétique uniforme, avec \overrightarrow{B} perpendiculaire à
		3	$\frac{e}{m} = \frac{U.O'M}{D.d.\ell.B^2}$	0,5	inagnetique uniforme, avec B perpendiculaire a v_0 pour : déterminer la nature du mouvement ; calculer la déflexion magnétique.
			$\frac{e}{m} \approx 1,76.10^{11} \mathrm{C.kg}^{-1}$	0,25	
points)	Partie II	1-1	$\Delta \ell_0 = \frac{mg}{K}$	0,25	-Appliquer la deuxième loi de Newton pour déterminer les grandeurs cinématiques $\overrightarrow{\mathbf{v}_{G}}$ et $\overrightarrow{a_{G}}$ et les grandeurs dynamiques et les exploiter.
Mécanique (5,5 points)		1-2	Equation différentielle	0,25	-Appliquer la deuxième loi de Newton à un système oscillant (corps solide-ressort) pour établir l'équation différentielle du mouvement et vérifier sa solution dans les cas où le système oscillant est en position horizontale ou inclinée ou verticale.
M		1-3	Démarche ; K=50 N.m ⁻¹	0,25 0,25	-Connaître et exploiter l'expression de la période propre et la fréquence propre du système oscillant (corps solide-ressort).
			Démarche; $V_{0z} \simeq -0.54 \mathrm{m.s}^{-1}$	0,25 0,25	-Exploiter les courbes : $x_G(t)$, $v_G(t)$ et $a_G(t)$. -Connaître la signification des grandeurs physiques intervenant dans l'expression de l'équation horaire $x_G(t)$ du système oscillant (corps solide-ressort) et les déterminer à partir des conditions initiales.
		2-1	(1) :régime pseudopériodique (2) : régime	0,25	-Reconnaître l'amortissement des oscillations, ses différents types et ses régimes.
		2-2-1	apériodique	0,25	Connaîtra at avalaitar l'avarraggian de l'énergia
		Z-Z-I	$E_{p} = \frac{1}{2} K \left(z^{2} + (\Delta \ell'_{0})^{2} \right)$	0,5	-Connaître et exploiter l'expression de l'énergie potentielle élastiqueConnaître et exploiter l'expression de l'énergie mécanique d'un système solide-ressort.
		2-2-2	Aboutir à $\Delta E_{\rm m} = -1,04.10^{-2} {\rm J}$	0,5	-Exploiter la conservation et la non-conservation de l'énergie mécanique d'un système solide-ressort.