4 *	الفسالك الكولية				المملكة المغربية وزارة التربية الوتصية المحدد المديدة المغربية وزارة التربية الوتصية المديدة		
	SSS	ssssssssssssssssssssss	عناصر الإجابة	RR 30F			
4h	مدة الإنجاز	الفيزياء والكيمياء			الماحة		
7	المعامل	شعبة العلوم الرياضية (أ) و (ب) (خيار فرنسية)			الشعبة أو المسلك		

Exercice 1 chimie (7points)

EX 1	Question	Eléments de réponse	Barème	Référence des questions dans le cadre de référence
	1-1	Equation de la réaction	0,25	-Ecrire l'équation de la réaction modélisant une
		(une seule flèche)		transformation acido-basique et identifier les deux
	1-2	Démonstration	0,75	couples intervenantsCalculer l'avancement final de la réaction d'un
				acide avec l'eau, connaissant la valeur de la
	1-3	$V_{BE} = 20 \text{mL}$	0,25	concentration et du pH de la solution de cet acide, et
		$K_{A} \approx 1, 6.10^{-4}$	0.25	le comparer à l'avancement maximal.
		$\mathbf{K}_{\mathbf{A}} \sim 1, 0.10$	0,25	-Définir le taux d'avancement final d'une réaction et le déterminer à partir de données expérimentales.
	1-4	$C_A = 0.04 \text{mol.L}^{-1}$	0,25	-Ecrire et utiliser l'expression de la constante
e 1			,	d'acidité K _A associée à l'équation de la réaction d'un
Partie 1		$C_0 = 20 \mathrm{mol.L}^{-1}$	0,25	acide avec l'eau.
Pa	1 5	XIZ.:C: A:	0.5	-Ecrire l'équation de réaction de dosage (en utilisant une seule flèche).
	1-5	Vérification	0,5	-Exploiter la courbe ou les résultats du dosage.
	2-1	Equation de la réaction	0,25	-Dresser le tableau d'avancement d'une réaction et
		•		l'exploiter. -Exploiter les différentes courbes d'évolution de la
	2-2	C _Λ .τ ²	0,5	quantité de matière d'une espèce chimique,
		$K_{A} = \frac{C_{A} \cdot \tau^{2}}{1 - \tau}$		- Définir le temps de demi-réaction $t_{1/2}$.
		T V		Déterminer le temps de demi-réaction
	2-3	$\tau \simeq 6\%$	0,5	graphiquement ou en exploitant des résultats
		Déduction	0,25	expérimentaux
	1	Equation de la réaction	0,25	- Nommer les esters comportant cinq atomes de carbone au
		Méthanoate de méthyl éthyl	0,25	maximum.
	2-1	Démonstration	0,25	- Connaître les caractéristiques des réactions d'estérification et
		$t_{\frac{1}{2}}$ =3min	0,25	d'hydrolyse (lentes et limitées).
	2.2		0.25	- Savoir que le catalyseur est une espèce qui augmente la vitesse d'une réaction chimique sans modifier l'état
7	2-2	$t_{1/2}$ > $t_{1/2}$ +justification	0,25	d'équilibre du système.
Partie 2	3-1	_	0,5	 Savoir que la présence de l'un des réactifs en excès ou l'élimination de l'un des produits déplace l'état d'équilibre du
ar		$K = \left(\frac{r}{r}\right)^2$,,,,	système dans le sens direct.
1		(1-r)		- Déterminer la composition du mélange réactionnel à un
	2.2	C00/	0.25	instant donné. Calculer le rendement d'une transformation
	3-2	r = 60%;	0,25	chimique.
		Vérification	0,25	
	4-	Méthode	0,5	
		$n_1 = 0,24 \text{mol}$	0,25	

RR 30F

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2023 - عناصر الإجابة - مادة: الفيزياء والكيمياء- شعبة العلوم الرياضية (أ) و (ب) (خيار فرنسية)

Exercice 2 : Transformations nucléaires (2,5 points)

Question	Eléments de réponse	Barème	Référence des questions dans le cadre de référence
1	Equation de la désintégration.	0,25	
	Radioactivité $oldsymbol{eta}^-$	0 ,25	Connaître et exploiter les deux lois de conservation. -Définir les radioactivités α , β^+ , β^- et l'émission γ .
2	$ \Delta E = 0,282 MeV .$	0,5	-Ecrire l'équation d'une réaction nucléaire en appliquant les deux lois de conservation.
3-1	Démonstration.	0,5	-Reconnaître le type de radioactivité à partir de l'équation d'une réaction nucléaireConnaître et exploiter la loi de décroissance radioactive et
3-2	Déduction.	0,25	exploiter sa courbe correspondante -Définir la constante de temps $ au$ et la demi-vie $t_{1/2}$
4-1	$t_a \simeq 5,410^8 an$	0,5	-Calculer l'énergie libérée (produite) par une réaction nucléaire : $E_{libérée} = \Delta E $.
4-2	Explication	0,25	 Reconnaître quelques applications de la radioactivité. Déterminer le radioélément convenable pour dater un événement donné.

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2023 - عناصر الإجابة - مادة: الفيزياء والكيمياء- شعبة العلوم الرياضية (أ) و (ب) (خيار فرنسية)

Exercice 3	Question	Eléments de réponse	Barème	Référence des questions dans le cadre de référence		
	I- 1	Equation différentielle	0,5	-Etablir l'équation différentielle et vérifier sa		
Partie 1	2	$E_0 = 10V$.	0,25	solution lorsque le dipôle RL est soumis à un échelon de tension.		
art	3	Démonstration	0,25	-Reconnaître et représenter les courbes de variation, en fonction du temps, de l'intensité du		
	4	$r=10\Omega$; $R_0=40\Omega$	0,25+0,25	courant $i(t)$ passant dans la bobine et les		
	II-1-1	C=5µF	0,25	grandeurs qui lui sont liées et les exploiter.		
	1-2	Méthode; $\frac{dE_t}{dt} = -R.i^2$	0,5+0,25	-Connaître et exploiter l'expression de la constante de tempsConnaître et exploiter l'expression de la période propre.		
Partie 2	1-3	Méthode ; $ \Delta E \approx 0.31 \text{mJ}$.	0,5+0,5	-Connaître et exploiter l'expression de l'énergie totale du circuitConnaître comment brancher un oscilloscope et un système d'acquisition informatisé pour visualiser les différentes tensions.		
art	2-1	Schéma du montage.	0,5	-Connaitre et exploiter l'expression de		
D	2-2	Méthode , $Z=300\Omega$.	0,25+0,25	l'impédance $Z = \frac{U}{I}$ du circuit.		
	2-3	$\cos \varphi = 0.5$; $P = 1.33.10^{-2}W$	0,25 0,25	-Connaitre le facteur de puissanceEtablir et exploiter l'expression de la puissance moyenne $P=U.I.cos\phi$		

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2023 - عناصر الإجابة - مادة: الفيزياء والكيمياء- شعبة العلوم الرياضية (أ) و (ب) (خيار فرنسية)

Exercice 4 5,5 points	Question	Eléments de réponse	Barème	Référence des questions dans le cadre de référence		
	1-1-1	Méthode; $\ \overrightarrow{R_T}\ = 260, 2 \text{ N}$	0,25 0,25	- Appliquer la deuxième loi de Newton pour établir l'équation différentielle du mouvement		
Partie 1	1-1-2	Démonstration	0,5	du centre d'inertie d'un système sur un plan horizontal ou incliné et déterminer les grandeurs cinématiques et dynamiques caractéristiques du mouvementAppliquer la		
<u>a.</u>	1-2	$v_{\ell} \simeq 39.8 \text{m.s}^{-1}$	0,25	deuxième loi de Newton pour établir l'équation différentielle du mouvement du centre d'inertie		
		$a_0 = 0,663 \text{m.s}^{-2}$	0,25	d'un solide en chute verticale avec frottement.		
	2	$v_x = -38,34t + 19,9$	0,5			
		$d = 5,16 \mathrm{m}$	0,25			
	1-1	$v(t) = \frac{e. \mathbf{U}_0}{m.d}.t$	0,25	Connaitre et exploiter les relations $\vec{F} = q\vec{E}$ et		
		$x(t) = \frac{1}{2} \cdot \frac{e \cdot U_0}{m \cdot d} \cdot t^2;$	0,25	$E = \frac{U}{d} \ .$ Appliquer la deuxième loi de Newton dans le cas d'une particule chargée pour :		
	1-2	Démonstration.	0,5	* établir les équations différentielles du mouvement. * établir les équations horaires du mouvement et les exploiter. * trouver l'équation de la trajectoire et l'exploiter pour calculer la déflexion électrostatique.		
e 2	1-3	Vérification	0,5			
Partie 2	2-1	$\vec{\mathrm{B}} \otimes$	0,25			
	2-2	Démonstration	0,5	Connaître les caractéristiques de la force de Lorentz et la règle pour déterminer son sens.		
	2-3-1	Vérification de l'expression	0,25	Appliquer la deuxième loi de Newton dans le cas d'une particule chargée se trouvant dans un		
	2-3-2	Démonstration	0,5	champ magnétique uniforme, avec \overrightarrow{B}		
		A = 37	0,25	perpendiculaire à V ₀ pour : * déterminer la nature du mouvement. * calculer la déflexion magnétique.		