Session normale: 2018

page

- Chimie -

1 - Etude d'une solution aqueuse d'un acide HA:

1-1- Equation chimique de la réaction :

$$HA(aq) + H_2O(\ell) \stackrel{\rightarrow}{\leftarrow} A^-(aq) + H_3O^+(aq)$$

1-2- * Taux d'avancement final τ:

$$\tau = \frac{x_f}{x_m} = \frac{\left[H_3 O^+ \right]}{C} \Rightarrow \underline{\tau} = \frac{10^{-pH}}{C}$$

- A.N:
$$\tau = \frac{10^{-3.44}}{10^{-2}} \approx 0.0363 = 3.63\%$$

* Espèce chimique prédominante:
$$\tau = \frac{A^{-}}{C} = \frac{A^{-}}{A^{-}} \Rightarrow \frac{A^{-}}{A^{-}$$

- A.N:
$$\frac{[AH]}{[A^-]} = \frac{1-0,0363}{0,0363} \approx 26,5$$
 c.à.d $[AH] >> [A^-] \Rightarrow AH$ est l'espèce prédominante.

1-3- * Expression de
$$pK_A$$
:
$$- pK_A = -Log(K_A) = -Log(\frac{|H_3O^+| \times |A^-|}{|AH|})$$

$$-[H_3O^+] = [A^-] = 10^{-pH} (2) \text{ et } [AH] = (H_3O^+] = C - 10^{-pH} (3)$$

$$-\left[H_{3}O^{+}\right] = \left[A^{-}\right] = 10^{-pH} \quad (2) \quad \text{et} \quad \left[AH\right] = \left(C - \frac{10^{-pH}}{10^{-2}}\right)^{-1} = C - 10^{-pH} \quad (3)$$

$$- \text{On remplace (2) et (3) dans (1), on our of } pK_{A} = -Log(\frac{10^{-2 \cdot pH}}{C - 10^{-pH}})$$

$$+ \frac{Valeur \, de \, pK_{A}}{10^{-2} - 10^{-3,44}} = \frac{10^{-2 \times 3,44}}{10^{-2} - 10^{-3,44}} = \frac{4,86}{10^{-2} - 10^{-3,44}}$$

* Valeur de
$$pK_A$$
:

$$pK_A = -Log(\frac{10^{-2\times3,44}}{10^{-2}-10^{-3,44}}) \approx 4,86$$

1-4-1 - Equation chimique de la réaction :

$$AH(aq) + HO^{-}(aq) \rightarrow A^{-}(aq) + H_{2}O(\ell)$$

1-4-2- Valeur de V_R pour lequel pH = 5.50:

- Dressons le tableau d'avancement :

Equation de la réaction		$AH(aq) + HO^{-}(aq) \rightarrow A^{-}(aq) + H2O(\ell)$				
Etat du système	Avancement ×(mol)	Quantités de matière (mol)				
Etat initial	0	$C.V_A$	$C.V_B$	0	en excès	
Etat final	X _{ma×}	$C.V_A - x_{\max}$	$C.V_B - x_{\max}$	x_{max}	en excès	

- Pour
$$V_B < V_{BE} = 20 mL$$
 : le réactif limitant est l'espèce HO^- ; donc :

$$C.V_B - x_{\text{max}} = 0$$
 ou $x_{\text{max}} = C.V_B$

Correction du sujet de l'examen national du Baccalauréat Session normale: 2018

2 page

- On sait que :
$$pH = pK_A + Log(\frac{A^-}{AH}) \Rightarrow \frac{A^-}{AH} = 10^{pH - pK_A}$$
 (1)

- On sait que :
$$pH = pK_A + Log(\frac{A^-}{AH}) \Rightarrow \frac{A^-}{AH} = 10^{pH-pK_A}$$
 (1)
- D'autre part : $\frac{A^-}{AH} = \frac{x_{\text{max}}}{CV_A - x_{\text{max}}} \Rightarrow \frac{A^-}{AH} = \frac{CV_B}{CV_A - CV_B} \Rightarrow \frac{A^-}{AH} = \frac{V_B}{V_A - V_B}$ (2)

- Les deux relations (1) et (2) conduisent à écrire

$$\frac{V_B}{V_A - V_B} = 10^{pH - pK_A} \implies V_B = V_A \cdot \frac{10^{pH - pK_A}}{1 + 10^{pH - pK_A}}$$

- A.N:
$$V_B = 20 \times \frac{10^{5,50-4,86}}{1+10^{5,50-4,86}} \approx 16,3mL$$

2- Hydrolyse d'un ester :

2-1- Equation chimique de la réaction :

2-1- Equation chimique de la réaction :

$$O$$
 $CH_3 - CH - C - O - CH_2 - CH_3 + H_2O \stackrel{?}{\leftarrow} D_3 - CH - C - OH + HO - CH_2 - CH_3$
 CH_3

2-2- Temps de demi-réaction de la transformation (1) :

Equation de la r	réaction	Ester + $H_2O \stackrel{\rightarrow}{\leftarrow} Acide + Alcool$					
Etat du système	Avancement ×(mol)	Quantités de matière (mol)					
Etat initial		$n_0(E)$	$n_0(E)$	0	0		
Etat intermédiaire	S. L.	$n_0(E) - x(t_{1/2})$	$n_0(E) - x(t_{1/2})$	$x(t_{1/2})$	$x(t_{1/2})$		
t = t _{1/2}	X(1,1/2)	$n_0(\mathbf{Z})$ $n(r_1/2)$	$n_0(\mathbf{Z})$ $n(i_{1/2})$	$\mathcal{K}(t_1/2)$	$\mathfrak{K}(l_{1/2})$		
Etat final	Xf	$n_0(E) - x_f$	$n_0(E) - x_f$	x_f	x_f		

- Cherchons la quantité de matière restante $n_{t_{1/2}}(E)$ de l'ester E à l'instant $t_{1/2}$:
- On a d'après le tableau : $n_{t_{1/2}}(E) = n_0(E) x(t_{1/2})$ avec $x(t_{1/2}) = \frac{x_f}{2}$ et $n_f(E) = n_0(E) x_f$
- Donc on peut écrire : $n_{t_{1/2}}(E) = n_0(E) \frac{x_f}{2} \Rightarrow n_{t_{1/2}}(E) = n_0(E) \frac{n_0(E) n_f(E)}{2}$

$$n_{t_{1/2}}(E) = \frac{n_0(E) + n_f(E)}{2}$$

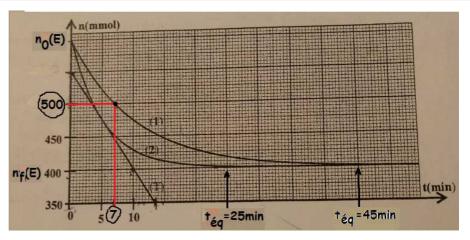
- Graphiquement, on trouve : $n_0(E) = 600mmo\ell$ et $n_f(E) = 400mmo\ell$
- **A.N**: $n_{t_{1/2}}(E) = \frac{600 + 400}{2} = \underline{500mmo\ell}$

Session normale: 2018

page

On repère la quantité 500mmol sur l'axe vertical, et par projection on trouve le temps de demi-réaction :

$$t_{1/2} \approx 7 \,\mathrm{min}$$



2-3- Courbe correspondant à la réaction sans catalyseur :

La courbe (1) correspond à la réaction d'hydrolyse sans catalyseur, car l'équilibre est atteint après écoulement de 45min, contrairement à l'écoulement uniquement de 25min pour atteindre l'équilibre en utilisant un catalyseur correspondant à la courbe (2).

2-4- <u>Vitesse volumique de réaction à $t_1 = 5 \min$ </u>:

- Par définition :
$$v(t) = \frac{1}{V_0} \cdot \frac{dx(t)}{dt}$$
 avec $x(t) = n_0(E) \cdot n_t(E)$

- L'expression devient :
$$v(t) = -\frac{1}{V_0} \cdot \frac{dn_t(E)}{dt}$$

- A
$$t_1 = 5 \min$$
: $v(5 \min) \approx -\frac{1}{V_0} \cdot \frac{\Delta n_t(E)}{\Delta t} = \frac{1}{71.10^{-3}} \times \frac{(550 - 400) \cdot 10^{-3}}{0 - 10}$
 $v(5 \min) \approx 0.21 mo\ell \cdot 10^{-1}$

3- Electrolyse de l'eau:

3-1- Les affirmations exactes :

- a) L'anode est liée à la borne positive du générateur ;
- b) Une transformation forcée s'effectue dans le sens inverse d'une transformation spontanée.
- d) Le courant électrique sort par la cathode de l'électrolyseur.

3-2- Equation de la réaction à l'anode :

A l'anode, il se produit une réaction d'oxydation de l'espèce H2O:

$$2.H_2O_{(\ell)} \stackrel{\rightarrow}{\leftarrow} O_{2(g)} + 4.H_{(aq)}^+ + 4.e^-$$

3-3- * Expression du volume de O2 formé à l'instant t :

- En se basant sur le tableau d'avancement, on trouve :

$$n(e^{-})=4.x=4. \ n(O_{2})=4.\frac{V}{V_{m}} \ et \ n(e^{-})=\frac{I\times\Delta t}{N_{A}\times e}$$

$$donc \ V=\frac{I.\Delta t}{4.N_{A}.e}.V_{m}$$

$$2.H_2O_{(\ell)} \stackrel{\rightarrow}{\leftarrow} O_{2(g)} + 4.H_{(aq)}^+ + 4.e^-$$

$$n_0 \qquad 0 \qquad 0 \qquad 0$$

$$n_0 - 2.x \qquad n(O_2) = x \quad 4.x \qquad n(e^-) = 4.x$$

Session normale: 2018

page 4

- A.N:
$$V = \frac{0.2 \times 8 \times 60}{4 \times 6.02.10^{23} \times 1.6.10^{-19}} \times 24 \approx 5.6.10^{-3} L = 5.6 mL$$

- Physique -

Exercice 1: Transformations nucléaires

1- Radioactivité α du radium $^{226}_{88}Ra$:

1-1- Définition :

L'énergie de liaison d'un noyau atomique est l'énergie qu'il faut fournir au noyau pour le dissocier en ses nucléons,

1-2- La proposition juste :

c) Après une durée égale à $3.t_{1/2}$; il reste12.5% (= $\frac{100}{2^3}\%$) des noyaux initiaux.

(On applique la relation : $N(n.t_{1/2}) = \frac{1}{2^n} \times N_0$)

1-3- Montrons que $1Ci \approx 3,73.10^{10} Bq$:

- La curie 1Ci est l'activité de 1g de radium 226

$$-1Ci = A(m = 1g) \Rightarrow 1Ci = \lambda.N(m = 1g) \Rightarrow 1Ci \xrightarrow{m(=1g)} \frac{m(=1g)}{m_{noy}} \Rightarrow 1Ci = \lambda.\frac{m(=1g)}{M}.N_A$$

- **A.N**:
$$1Ci = 1,4.10^{-11} \times \frac{1}{226} \times 6,02.10^{23} \times 3,10^{10} Bq$$

1-4- L'activité d'un échantillon en Juin 2018 :

- En Juin 1898 : A(to = 0) = 1Ci = 3 3.10 10 Bq

- En Juin 2018 : $A(t) = A(t_0 = 0)$.e avec $t = \Delta t = 2018 - 1898 = 120$ ans

- **A.N**:
$$A(t) = 3.73.10^{10} \times e^{-(1.4.10^{-11} \times 120 \times 365, 25 \times 24 \times 3600)} \approx 3.54.10^{10} Bq$$

1-5- Calcul de l'énergie produite par la désintégration d'un noyau du radium 226 :

- L'équation de désintégration est : $^{226}_{88}Ra
ightarrow \, ^{222}_{86}Rn + {}^{4}_{2}He$

- L'énergie libérée est : $E_{\ell ib} = \left|\Delta E\right| = \left|\left(E_{\ell}\binom{226}{88}Ra\right) - E_{\ell}\binom{4}{2}He\right) - E_{\ell}\binom{222}{86}Rn\right|$

- **A.N**:
$$E_{\ell ib} = \left| 1,7311.10^3 - 28,4 - 1,7074.10^3 \right| \approx 4,7 MeV$$

2- Mouvement de α dans un champ magnétique uniforme :

2-1- Nature du mouvement de la particule α :

* Expression de l'accélération :

La particule α est soumise uniquement à la force de Lorentz : $\overrightarrow{F}=2e.\overrightarrow{v}$ $\Lambda\overrightarrow{B}$

Par application de la $2^{\text{ème}}$ loi de Newton dans un référentiel galiléen : $m(\alpha) \cdot \vec{a} = 2e \cdot \vec{v} \Lambda \vec{B}$

Correction du sujet de l'examen national du Baccalauréat Session normale: 2018

page

On en déduit : $\vec{a} = \frac{2e}{m(\alpha)} \cdot \vec{v} \wedge \vec{B}$; cette relation montre que le vecteur accélération est

perpendiculaire au vecteur vitesse v.

* Energie cinétique de la particule α :

On a:
$$\frac{dE_c}{dt} = \underbrace{P}_{puissance}(\vec{F}) = \vec{F}.\vec{v} = 0 \ car \ \vec{F} \ est \ perpendiculaire \ \vec{a} \ \vec{v}$$

Cela prouve que l'énergie cinétique de la particule est constante, et par suite le mouvement est uniforme.

* Le mouvement de α est plan :

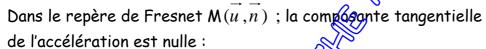
Posons
$$\overrightarrow{B} = B\overrightarrow{k}$$
 alors $\overrightarrow{a} = \frac{2eB}{m(\alpha)} \cdot \overrightarrow{v} \wedge \overrightarrow{k}$ ce qui montre que

la composante $a_{\rm z\!\!\!\!/}$ de l'accélération est nulle $a_{\rm z\!\!\!\!/}=0$

et par intégration et application des conditions initiales on en déduit que z = 0

Donc le mouvement de α se fait dans le plan (π) .

* Le mouvement de α est circulaire :



$$a = a_n$$
 avec $a = \frac{2eB}{m(\alpha)}v_0$ et $a_n = \frac{v_0^2}{\rho}$

$$a = a_n \quad avec \ a = \frac{2eB}{m(\alpha)} v_0 \quad et \quad a_n = \frac{v_0^2}{\rho} \qquad \rho \quad \text{otherwise} \quad rayon \ de \ courbure$$
 On écrit alors :
$$a = \frac{2eB}{m(\alpha)} v_0 = \frac{v_0^2}{\rho} \quad \text{otherwise} \quad \underline{\rho} = \frac{m(\alpha).v_0}{2eB} = Cte$$

Donc le mouvement est <u>circulaire</u> et <u>uniforme</u>, et le rayon est : $OM = R = \frac{m(\alpha).v_0}{2eR}$

- **A.N**:
$$OM = \frac{6,6447.10^{-27} \times 1,5.10^7}{2 \times 1,6.10^{-19} \times 1,5} \approx 0,207m = 20,7cm$$

Exercice 2 : Electricité

I- Réponse d'un dipôle RC à un échelon de tension :

1 - Equation différentielle vérifiée par la tension u_c :

D'après la figure1 : $u_R + u_C = E$ (1)

En respectant les conventions : $u_R = R.i = R.\frac{dq}{dt} = RC.\frac{du_C}{dt}$

La relation (1) devient :
$$RC.\frac{du_C}{dt} + u_C = E$$
 ou bien $\frac{du_C}{dt} + \frac{1}{RC}u_C = \frac{E}{RC}$

Correction du sujet de l'examen national du Baccalauréat Session normale: 2018

page 6

2- * <u>Détermination de E:</u>

- L'équation de la fonction $\frac{du_C}{dt} = f(u_C)$ est de la forme : $\frac{du_C}{dt} = A.u_C + B$
- L'équation différentielle peut s'écrire : $\frac{du_C}{dt} = -\frac{1}{RC}u_C + \frac{E}{RC}$
- Lorsque $\frac{du_C}{dt} = 0$ alors $E = u_C$ et graphiquement (figure2) on trouve E = 6V

* <u>Vérification de</u> C = 10 nF:

- On pose $A = -\frac{1}{RC}$: le coefficient directeur de la droite

Alors
$$C = -\frac{1}{R \times A} = -\frac{1}{2.10^3 \times \frac{6 \times 5.10^4 - 0}{0 - 6}} \Rightarrow \frac{C = 10^{-8} F = 10 nF}{2.10^3 \times \frac{6 \times 5.10^4 - 0}{0 - 6}}$$

3- Détermination de la valeur du rendement ρ :

- Par définition : $\rho = \frac{E_e}{F}$
- En régime permanent $u_C(\infty)=E$ alors $E_e=1.C.u_C^2=\frac{1}{2}.C.E^2$ et $E_g=C.E^2$

- Donc :
$$\rho = \frac{E_e}{E_g} = \frac{\frac{1}{2}.C.E^2}{C.E^2} \implies \rho = 0.50 = 0.50$$

II - Réponse d'un dipôle RL à un échelon de tension :

1-1- Equation différentielle vérifie par i(t):

- D'après la loi d'additivité des tensions : $u_b + u_{R_i} = E$ (1)
- En respectant les conventions : $u_b = L.\frac{di}{dt} + r.i$ et $u_{R_1} = R_1.i$

Alors (1) s'écrit :
$$L \cdot \frac{di}{dt} + (r + R_1) \cdot i = E$$
 ou bien $\frac{di}{dt} + \frac{(r + R_1)}{L} \cdot i = \frac{E}{L}$

1-2- * <u>Détermination de</u> R1:

- Au régime permanent : $\left(\frac{d\,i}{dt}\right)_{t\to\infty} + \frac{(r+R_1)}{L}.i_{\max} = \frac{E}{L} \implies (r+R_1).i_{\max} = E$
- Finalement : $R_1 = \frac{E}{i_{\text{max}}} r$
- **A.N** : $R_1 = \frac{6}{50.10^{-3}} 20 = 100\Omega$

Session normale: 2018

page 7

* Vérification de L = 0,3H:

- La constante de temps du circuit RL : $\tau = \frac{L}{r + R_1}$
- On en déduit que : $L = \tau \times (r + R_1)$ avec $\tau = 2.5ms$ (figure 4)
- **A.N**: $L = 2,5.10^{-3} \times (20+100) = 0,3H$

1-3- Calcul de ub au régime permanent :

- L'équation différentielle donne : $(u_b)_{\infty} = E (u_{R_1})_{\infty} \implies (u_b)_{\infty} = E R_1.i_{\max}$
- **A.N**: $(u_b)_{\infty} = 6 100 \times 0.05 = 1V$

2-1- Valeur de i juste après l'ouverture de l'interrupteur K :

L'intensité i(t) est une fonction continue : $i(t=0) = i_{max} = 50 \text{ mA}$

2-2- * Valeur de $\frac{d i(t)}{dt}$ $\dot{a} \uparrow = 0$:

- D'après la loi d'additivité des tensions : $u_b + u_{R_1} + u_{R_2} = 0$ (1)
- En respectant les conventions : $u_b = L \cdot \frac{di(t)}{dt} r \cdot i u_{R_1} = R_1 \cdot i$ et $u_{R_2} = R_2 \cdot i$

Alors (1) s'écrit :
$$L \cdot \frac{di}{dt} + (r + R_1 + R_2)i = 0$$
 où bien $\left(\frac{di(t)}{dt}\right)_{t=0} = -\frac{(r + R_1 + R_2)}{L}i_{\text{max}}$

- A.N:
$$\left(\frac{di(t)}{dt}\right)_{t=0} = -\frac{(20+100+2000)}{0.3} \times 50.10^{-3} = -3,53.10^2 A.s^{-1}$$

- * Calcul de ub à l'ouverture de l'interrupteur K:
- L'expression est : $u_b(0) = L \cdot \left(\frac{di(t)}{dt}\right)_{t=0} + r \cdot i_{\text{max}}$
- **A.N**: $u_b(0) = 0.3 \times (-3.53.10^2) + 20 \times 0.05 \approx -105V$

3- Rôle de la branche :

C'est pour éviter l'apparition des étincelles aux bornes de l'interrupteur au moment de son ouverture ; qui sont dues à la surtension aux bornes de la bobine : $u_b(0) \approx -105V$!!

III - Oscillateur RLC en régime forcé :

1 - Fréquence de résonance N_0 :

- A la résonance l'impédance Z du circuit RLC est <u>minimale</u> ;
- D'après la figure5 ; on trouve : $N_0 = 0.5KHz = 500Hz$

2- <u>Capacité</u> C₁ <u>du condensateur :</u>

- A la résonance ; la relation est vérifiée : $L.C_1.(2\pi N_0)^2=1$

2eme année Sciences Mathématiques

Correction du sujet de l'examen national du Baccalauréat Session normale : 2018

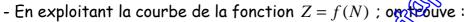
page

- On en déduit que : $C_1 = \frac{1}{4.\pi^2.L.N_0^2}$
- **A.N**: $C_1 = \frac{1}{4 \times 10 \times 0.3 \times 500^2} \approx 3.3 \cdot 10^{-7} F = 0.33 \mu F$

3- * Relation entre Z, ret R3:

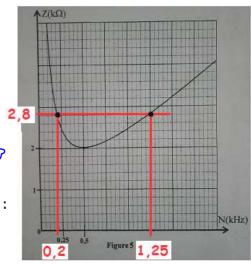
- Pour $I = \frac{I_0}{\sqrt{2}}$ on a: $U = Z.I = Z.\frac{I_0}{\sqrt{2}}$
- A la résonance ${\it I}={\it I}_0$ on a : ${\it U}={\it Z}_0.{\it I}_0=(r+{\it R}_3).{\it I}_0$
- Des deux relations on trouve : $Z = (r + R_3).\sqrt{2}$
 - * Déduction graphique de ΔN :
- Calcul de Z lorsque $I = \frac{I_0}{\sqrt{2}}$:

$$Z = (20+1980).\sqrt{2} \approx 2828\Omega \approx 2.8K\Omega$$



$$N_{\rm min} pprox 0.2 \mbox{\it KHzy}$$
 et $N_{\rm max} pprox 1.25 \mbox{\it Kzy}$

d'où:
$$\Delta N = N_{\text{max}} - N_{\text{min}} \approx 1,25 - 0,2 = 1,05 \text{KH z/s}$$



Exercice 3: Mécanique

PARTIE I: Etude du mouvement d'un comps solide

1 - Etude du mouvement du centre G dans l'air :

1-1- Equation différentielle régissant a vitesse Vz du centre d'inertie G:

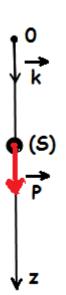
- Système à étudier : {Le baigneur
- Repère d'étude R (O ; \vec{k}) supposé galiléen ;
- Bilan des forces extérieures :

Poids du corps seulement car la chute est libre : $\stackrel{
ightharpoonup}{P}$

- $2^{\text{ème}}$ loi de newton : $\overrightarrow{P} = m.\overrightarrow{a_G}$
- Projection de cette relation vectorielle sur l'axe Oz : $P_z = m.a_z$ (*)
- Expression : $P_z = P = m.g$ et $a_z = \frac{dv_z}{dt}$.
- La relation (*) devient : $m.g = m.\frac{dv_z}{dt}$
- Finalement l'équation différentielle est : $\frac{dv_z}{dt} = g$ (1)

1-2- * Temps de chute tc:

En intégrant l'équation (1): $v_z(t) = g.t$ (2) $(v_z(0) = 0)$



Session normale: 2018

page

En intégrant l'équation (2): $z(t) = \frac{1}{2}gt^2$ (3) (z(0) = 0)

Le temps de chute tc correspond à : $z(t_c) = h$

Donc:
$$\frac{1}{2}gt_c^2 = h \Rightarrow t_c = \sqrt{\frac{2.h}{g}}$$

- **A.N**:
$$t_c = \sqrt{\frac{2 \times 10}{10}} \approx 1.4s$$

* Vitesse Ve d'entrée dans l'eau :

- La relation (2) donne : $v_z(t_c) = g.t_c$
- **A.N**: $v_e = v_z(t_c) = 10 \times 1,4 = 14 \, \text{m.s}^{-1}$

2- Etude du mouvement vertical du centre G dans l'eau:

2-1- Equation différentielle régissant la vitesse V_z du sentre d'inertie G:

- Système à étudier : {Le baigneur (S)}
- Repère d'étude R (O ; \vec{k}) supposé galiléen ;
- Bilan des forces extérieures :
 - * Poids du corps : $\overrightarrow{P} = m.\overrightarrow{g} = mg.\overrightarrow{k}$
 - * Force de frottement fluide : $\overrightarrow{f} = -\lambda v_z \cdot \overrightarrow{k}$
 - * Poussée d'Archimède: $\overrightarrow{F} = -\frac{m}{d}$. \overrightarrow{g}
- 2^{ème} loi de Newton : $m.a_G = \vec{F} + \vec{f} + \vec{f}$
- Projection de cette relation vectorielle sur l'axe Oz : $m.a_z = F_z + f_z + P_z$ (*)
- Expressions: $F_z = -\frac{m}{d} \cdot g$; $f_z = -\lambda \cdot v_z$; $P_z = P = m \cdot g$ et $a_z = \frac{dv_z}{dt}$.
- La relation (*) devient : $m \cdot \frac{dv_z}{dt} = (-\frac{m}{d} \cdot g) + (-\lambda \cdot v_z) + (m \cdot g)$
- ou bien : $\frac{dv_z}{dt} + \frac{\lambda}{m} v_z = g.(1 \frac{1}{d})$
- Finalement l'équation différentielle est : $\frac{dv_z}{dt} + \frac{1}{\tau} v_z = g.(1 \frac{1}{d})$ avec $\tau = \frac{m}{\lambda}$

2-2- * Expression de la vitesse limite $V_{\ell_{\mathcal{X}}}$:

- Au régime permanent : $\frac{dv_z}{dt} = 0$ et $v_z = v_{\ell z}$
- L'équation différentielle devient : $0 + \frac{1}{2} v_{\ell z} = g.(1 \frac{1}{3})$

2eme année Sciences Mathématiques

Correction du sujet de l'examen national du Baccalauréat Session normale: 2018

10 page

- Finalement la vitesse limite est : $v_{\ell z} = \tau g \cdot (1 \frac{1}{d})$
 - * Calcul de la vitesse limite $V_{\ell z}$:

- **A.N**:
$$v_{\ell Z} = \frac{80}{250} \times 10 \times (1 - \frac{1}{0.9}) \approx -0.36 \text{m.s}^{-1}$$

2-3- Expressions de A et B:

- La solution de l'équation différentielle est : $v_z(t) = A + B.e^{-\frac{t}{\tau}}$
- L'équation différentielle peut s'écrire : $\frac{d}{dt}(A+B.e^{-\frac{t}{\tau}}) + \frac{1}{\tau}.(A+B.e^{-\frac{t}{\tau}}) = g.(1-\frac{1}{\tau})$

$$\Rightarrow -\frac{B}{\tau}.e^{-\frac{t}{\tau}} + \frac{1}{\tau}.(A + B.e^{-\frac{t}{\tau}}) = g.(1 - \frac{1}{d}) \Rightarrow \underbrace{-\frac{B}{\tau}.e^{-\frac{t}{\tau}} + \frac{1}{\tau}B.e^{-\frac{t}{\tau}}}_{=0} + A = g.(1 - \frac{1}{d})$$

$$\Rightarrow A = \tau.g.(1 - \frac{1}{d})$$
 ou $A = v_{\ell Z}$

$$\Rightarrow A = t \cdot g \cdot (1 - \frac{1}{d}) \quad \text{ou} \quad \frac{A = v_{\ell z'}}{A}$$

$$- v_z(t = 0) = A + B \cdot e^0 = A + B \quad \text{et} \quad v_z(t = 0) = v_e \quad \Rightarrow B \quad e^- - v_{\ell z'}$$
2-4- Instant de retour t_r :

2-4- Instant de retour t_r :

- C'est l'instant où le baigneur s'arrête pour rebrousser chemin : $v_{z_r}(t_r) = 0$
- On a aussi : $v_{z'}(t_r) = v_{\ell z'} + (v_e v_{\ell z'})$.
- Des deux relations on écrit : $v_{\ell z} + (v_e v_{\ell z}) \cdot e^{-\frac{v_r}{\tau}} = 0$
- Finalement on about it à l'expression : $t_r = -\tau . \ell n \left(\frac{-v_{\ell z}}{v_e v_{\ell z}} \right)$
- A.N: $t_r = -\frac{80}{250} . \ell n \left(\frac{-(-0.36)}{14 (-0.36)} \right) \approx 1.18s$

PARTIE II: Etude du mouvement d'un pendule élastique

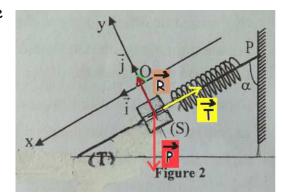
1- Expression de la longueur ℓ_e :

A l'équilibre : $\overrightarrow{T}_0 + \overrightarrow{P} + \overrightarrow{R} = \overrightarrow{0}$, et par projection sur l'axe Ox incliné vers le bas, on aura :

$$T_{0x} + P_x + R_x = 0$$

Alors:
$$\left| \overline{-K.\Delta\ell_{\acute{e}q} + m.g.\cos(\alpha) + 0} \right| avec \Delta\ell_{\acute{e}q} = \ell_e - \ell_0$$

d'où:
$$\ell_e = \ell_0 + \frac{m.g.\cos(\alpha)}{K}$$



2eme année Sciences Mathématiques

Correction du sujet de l'examen national du Baccalauréat Session normale : 2018

page 11

2-1- Equation différentielle vérifiée par l'abscisse x(t) du centre d'inertie G:

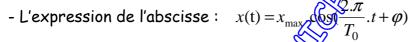
- Système à étudier : {solide(S)}
- Repère d'étude R (O; \overrightarrow{i} ; \overrightarrow{j}) supposé galiléen ;
- Bilan des forces extérieures :
- * Poids du solide (S) : $\stackrel{\rightarrow}{P}$
- * Action du ressort : T
- * Action du plan incliné : \overrightarrow{R}
- La 2ème loi de Newton donne : $\vec{P} + \vec{T} + \vec{R} = m.a_G$;
- Projection de cette relation vectorielle sur l'axe Ox :

$$P_{x} + T_{x} + R_{x} = m.a_{x} \implies mg\cos(\alpha) - K(\Delta\ell_{\acute{e}q} + x) + 0 = m.x$$

$$mg\cos(\alpha) - K.\Delta\ell_{\acute{e}q} - K.x = m.x$$

$$\Rightarrow \frac{K}{x + \frac{K}{m}} \cdot x = 0$$

2-2- Expression numérique de x(t):



- D'après la figure 3 : $x_{\text{max}} = 3 \times 0.5 = 155 \text{ m}$
- L'équation différentielle vérifiée \mathbf{p} $\mathbf{x}(t)$ peut s'écrire :

$$\frac{K}{x+\frac{K}{m}} = 0 \text{ ou } x = -\frac{K}{m} x \text{ ou bien } a_x = -\frac{K}{m} x$$

- L'équation de la droite (figure 3) : $a_x = A.x$
- En comparant les deux équations ; on identifie le coefficient directeur :

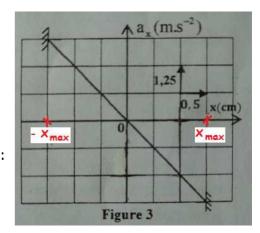
$$-\frac{K}{m} = A = \frac{\Delta a_x}{\Delta x} = \frac{1,25 - 0}{-0,5.10^{-2} - 0} = -250 \,\text{s}^{-2}$$

- Or on sait que : $\frac{2\pi}{T_0} = \sqrt{\frac{K}{m}} = \sqrt{-A}$ **A.N** : $\frac{2\pi}{T_0} = \sqrt{-A} = \sqrt{250} = 15,8 \, rad.s^{-1} \approx 5.\pi \, rad.s^{-1}$
- D'une part d'après la condition initiale $x(0) = x_{\text{max}}$

D'autre part
$$x(0) = x_{\text{max}} \cdot \cos(\frac{2.\pi}{T_0} \times 0 + \varphi) = x_{\text{max}} \cdot \cos(\varphi)$$

D'où
$$x_{\text{max}}.\cos(\varphi) = x_{\text{max}} \Rightarrow \cos(\varphi) = 1 \Rightarrow \varphi = 0$$

- Finalement : $x_{\text{en m}}(t) = 1,5.10^{-2}.\cos(5.\pi. t_{\text{en s}})$



2eme année Sciences Mathématiques

Correction du sujet de l'examen national du Baccalauréat Session normale: 2018

12 page

3-1- Expression de l'énergie potentielle E_n :

- L'énergie potentielle totale est : $E_p = E_{pp} + E_{pe}$ (*)
- L'énergie potentielle de pesanteur est : $E_{pp} = m.g.z + C$; l'axe Oz est orienté vers le haut.

Or à z=0 on a $E_{pp}=0$ donc C=0; d'où $E_{pp}=-m.g.z$ avec $z=-x.\cos(\alpha)$

 $E_{nn} = -m.g.x.\cos(\alpha)$ (1) Donc

- L'énergie potentielle élastique est : $E_{pe} = \frac{1}{2} . K . \Delta \ell^2 + C'$ avec $\Delta \ell = x + \Delta \ell_{\acute{e}q}$

Or lorsque $\Delta \ell = \Delta \ell_{\acute{e}q}$ on a $E_{pe} = 0$ donc $C' = -\frac{1}{2}.K.\Delta \ell_{\acute{e}q}^{2}$;

d'où $E_{pe} = \frac{1}{2} . K(x + \Delta \ell_{eq})^2 - \frac{1}{2} . K . \Delta \ell_{eq}^2$

En développant cette expression on aura : $E_{pe} = \frac{1}{2}.Kx^2 + (8)x \cdot \Delta \ell_{\acute{e}q} + \frac{1}{2}.K \cdot \Delta \ell_{\acute{e}q}^2 - \frac{1}{2}.K \cdot \Delta \ell_{\acute{e}q}^2$ Donc : $E_{pe} = \frac{1}{2}.K \cdot \Delta \ell_{\acute{e}q} + \frac{1}{2}.K \cdot \Delta \ell_{\acute{e}q}^2 - \frac{1}{2}.K \cdot \Delta \ell_{\acute{e}q}^2$

 $E_{pe} = \frac{1}{2} . Kx^2 + K.x. \Delta \ell_{\acute{e}q}$ (2) Donc:

- On porte (1) et (2) dans (*), on aura : $E_p = mg.x.cos(\alpha) + Kx\Delta\ell_{\acute{e}q} + \frac{1}{2}.K.x^2$

On peut simplifier cette expression : $E_p = mg.\cos(\alpha) + K\Delta\ell_{\acute{e}q}$). $x + \frac{1}{2}.K.x^2$

Finalement on about tà l'expression (finale: $E_p = \frac{1}{2}K.x^2$

3-2- * Valeur de la raideur K

- L'énergie mécanique se conserve au cours du mouvement de ${\it G}: E_m = E_c + E_p = Cte$
- Lorsque $x = x_{max}$:

$$E_c(x_{\text{max}}) = 0 \implies E_m(x_{\text{max}}) = E_p(x_{\text{max}}) = \frac{1}{2} K.x_{\text{max}}^2$$

- Lorsque x = 0:

$$E_m(0) = E_c(0) + \underbrace{E_p(0)}_{-0}$$

$$\Rightarrow E_m(0) = E_c(0) = 9mJ = 9.10^{-3} J \text{ (voir figure 4)}$$

$$E_m(x_{\text{max}}) = E_m(0) \implies \frac{1}{2} K.x_{\text{max}}^2 = 9.10^{-3}$$

$$\Rightarrow K = \frac{2 \times 9.10^{-3}}{(1.5.10^{-2})^2} = 80 N.m^{-1}.$$

* Valeur de la masse *m*:

