2eme année Sciences Mathématiques

Correction du sujet de l'examen national du Baccalauréat Session de rattrapage : 2017

page 1

- Chimie -

Partie I:

1-1-2- Détermination de la masse de l'acide formé à l'équilibre chimique :

- La constante de l'équilibre est :
$$K = \frac{[acide]_{\acute{e}q} \times [alcool]_{\acute{e}q}}{[ester]_{\acute{e}q} \times [eau]_{\acute{e}q}}$$
 $avec [X] = \frac{n(X)}{V_{so\ell}}$

- En se servant du tableau d'avancement de l'hydrolyse :

Equation de la réaction		$C_2H_5COOC_2H_5 + H_2O \stackrel{\rightarrow}{\leftarrow} C_2H_5COOH + C_2H_5OH$					
Etat du système	Avancement x(mol)	Quantités de matière (mol)					
Etat initial	0	0,1	163	0	0		
Etat intermédiaire	X	0,1-x	01-x	X	Х		
Etat équivalence	$x_{\acute{e}q}$	$0,1-x_{\acute{e}q}$	$0.1-x_{\acute{e}q}$	$x_{\acute{e}q}$	$x_{\acute{e}q}$		

On écrit :
$$K = \frac{{x_{\acute{e}q}}^2}{{(0,1-x_{\acute{e}q})}^2}$$
 ; on obtient : $x_{\acute{e}q} = \frac{{0,1 \times \sqrt{K}}}{{\sqrt{K}}}$ ou $x_{\acute{e}q} = \frac{{0,1 \times \sqrt{K}}}{{\sqrt{K}} + 1}$ (avec $0 < x_{\acute{e}q} < 0.1 mol$)

On retient la solution convenable :
$$x_{\acute{e}q} = \frac{0.1 \times \sqrt{0.25}}{\sqrt{0.25} + 1} \approx 0.033 mol$$

- La masse de l'acide formé à l'équilibre es $m = x_{\acute{e}q}.M(C_2H_5COOH) \approx 0.333 \times 74 \approx 2.44g$

1-2-1- Equation de la réaction :
$$C_2H_5COOC_2H_5 + HO^- \stackrel{\rightarrow}{\leftarrow} C_2H_5COO^- + C_2H_5OH$$

1-2-2- Rendement de cette réaction

$$r = \frac{n_{\rm exp}(alcool)}{n_{th\acute{e}orique}(alcool)} = \frac{\frac{m_{\rm exp}}{M(C_2H_5OH)}}{\frac{m_0}{M(E)}} \text{ , ou bien : } \underline{r = \frac{m_{\rm exp}}{m_0} \times \frac{M(E)}{M(C_2H_5OH)}}$$

2- Etude d'une solution d'acide propanoïque :

2-1-1- Equation chimique de la réaction entre l'acide propanoïque et l'eau :

$$C_2H_5COOH_{(aa)} + H_2O_{(\ell)} \stackrel{\rightarrow}{\leftarrow} C_2H_5COO^{-}_{(aq)} + H_3O^{+}_{(aq)}$$

2-1-2- Expression du pK_A:

D'après le cours on a la relation suivante : $pH = pK_A + \log\left(\frac{\left \lfloor C_2H_5COO^- \right \rfloor}{\left \lceil C_2H_5COOH \right \rceil}\right)$.

2-1-3-Taux d'avancement final
$$\tau$$
: On a : $\tau = \frac{x_f}{x_m} = \frac{\left[H_3 O^+\right]}{C}$; ou bien

$$\frac{\text{2-1-3-Taux d'avancement final } \mathbf{t} : \text{ On a } : \tau = \frac{x_f}{x_m} = \frac{\left[H_3 O^+\right]}{C} \text{ ; ou bien }$$

$$\tau = \frac{\left[H_3 O^+\right]}{\left[C_2 H_5 COOH\right] + \left[C_2 H_5 COO^-\right]} = \frac{\left[H_3 O^+\right]}{\left[C_2 H_5 COOH\right] + \left[H_3 O^+\right]} = \frac{1}{1 + \frac{\left[C_2 H_5 COOH\right]}{\left[H_3 O^+\right]}} \tag{*}$$

2eme année Sciences Mathématiques

Correction du sujet de l'examen national du Baccalauréat Session de rattrapage : 2017

2 page

Or d'après le résultat : $pH = pK_A + \log \left(\frac{\left[C_2 H_5 COO^- \right]}{\left[C_2 H_5 COOH \right]} \right)$; $alors : \frac{\left[C_2 H_5 COOH \right]}{\left[C_2 H_5 COO^- \right]} = 10^{pK_A - pH}$ (**)

On remplace (**) dans (*), on aura l'expression : $\tau = \frac{1}{1 + 10^{pK_A - pH}}$

A.N: $\tau = \frac{1}{1 + 10^{4,9-2,9}} \approx 9.9.10^{-3} \approx 1\%$

<u>2-2-1- Equation chimique de la réaction du dosage :</u>

 $C_2H_5COOH(\ell) + HO^-(aq) \rightarrow C_2H_5COO^-(aq) + H_2O(\ell)$

2-2-2-Recherche de l'expression du rapport : $\frac{\left[C_2H_5COO^{-1}\right]}{\left[C_1H_2COOH\right]}$

- Tableau d'avancement :

Equation de la réaction		$C_2H_5COOH(\ell) + HO^-(aq) \rightarrow H_5COO^-(aq) + H_2O(\ell)$					
Etat du système	Avancement x(mol)	Quantités de matière (mol)					
Etat initial	0	$C_A.V_A$	C_B	0	0		
Etat intermédiaire	X	$C_A.V_A - x$	C_{B} $-x$	х	x		
Etat équivalence	x_E	$C_A.V_A-x_E$	$X_{B,E} - x_E$	x_E	x_E		

- Avant l'équivalence $V_B < V_{B,E}$, le réactif limitant est $HO^-(aq)$: $n(HO^-) = C_B V_B x = 0 \Rightarrow x = C_B V_B$

Or au point d'équivalence, la relation qui se réalise est : $C_A V_A = C_B V_{B,E}$ - L'expression finale est : $\frac{\left[C_2 H_5 COO^-\right]}{\left[C_2 H_5 COOH\right]} = \frac{V_B}{V_{B,E} - V_B}$

<u>2-2-2- Vérification du pK_A du couple</u> $C_2H_5COOH/C_2H_5COO^-$:

- La fonction $pH = \log\left(\frac{V_B}{V_{B.F} - V_B}\right)$ est affine d'équation $pH = a.\log\left(\frac{V_B}{V_{B.F} - V_B}\right) + b$ (1)

Où b représente l'ordonnée à l'origine, et graphiquement il vaut : $b \approx 4.9$

- En comparant la relation (1) avec celle donnée à la réponse de la question 2-1-2-

 $pH = \log \left(\frac{\left[C_2 H_5 COO^- \right]}{\left[C_2 H_5 COOH \right]} \right) + pK_A$; On déduit alors $\underline{pK_A \approx 4.9}$

- 1- Le bon choix est : b) Le pole positif de la pile est l'électrode de l'argent.
- Le quotient de réaction initial : $Q_{r,i} = \frac{\left[Cd^{2+}\right]_i}{\left[A_{\alpha}^{+}\right]_{,2}^{2}} = \frac{0.2}{0.4^2} = 1.25 << K = 5.10^{40}$

page

3

- Le sens de la réaction spontanée est le sens direct $\stackrel{(1)}{ o}$; donc il y aura oxydation du cadmium Cd qui est l'électrode anode ou pole négatif de cette pile.

2-1- Expression du quotient de la réaction :

$$Q_r = \frac{\left[Cd^{2+}\right]_{(t)}}{\left[Ag^+\right]_{(t)}^2} = \frac{\frac{C_2.V + x}{V}}{\left(\frac{C_1.V - 2.x}{V}\right)^2} = \frac{C_2.V^2 + V.x}{\left(C_1.V - 2.x\right)^2} \qquad \text{A.N}: \ Q_r = \frac{1,25.10^{-2} + 0,25.x}{\left(0,1 - 2.x\right)^2}$$

2-2- Calcul du quotient de la réaction à t = 10h :

- Tableau d'avancement :

Equation de la réaction		$2Ag^{+}_{(aq)} + Cd_{(s)} \stackrel{\rightarrow}{\leftarrow} 2.Ag_{(s)} + Cd^{2+}_{(aq)}$				Quantité de
Etats du système	Avancement × (mol)	Quantités de matière (mol)				matière des e ⁻ échangés :
E. Initial	0	$C_1.V$	$n_{\dot{l}}(Cd)$	$\mathcal{M}_{l}(Ag)$	$C_2.V$	0
E. Intermédiaire	X	$C_1.V - 2.x$	$n_i(Cd)-x$	(Ag)+2.x	$C_2.V + x$	$n(e^-) = 2.x$
E. Final	× _{ma×}	$C_1.V - 2.x_m$	$n_i(Cd) - x_i$	$n_i(Ag) + 2.x_m$	$C_2.V + x_m$	$n(e^-) = 2.x_m$

- Cherchons l'avancement x à cet instant :

On a la quantité d'électricité Q transportée pendant Δt , par les porteurs de charges (les électrons dans le circuit extérieur de la pile est : $Q = n(e^-).F = I.\Delta t$ avec $n(e^-) = 2.x$ d'où :

$$x = \frac{I.\Delta t}{2.F} \stackrel{A.N}{=} \frac{0.215 \times 10 \times 3600}{2 \times 9.65.10^4} \approx 0.04 mo\ell$$

- A.N:
$$Q_r = \frac{1,25.10^{-2} + 0,25 \times 0,04}{(0,1-2\times0,04)^2} \approx 56.25$$

2-3- Calcul de la variation $|\Delta m|$:

- Quand la pile sera usée, les ions Aq^{\dagger} disparaissent totalement (Cd est en excès):

$$n_f(Ag^+) = C_1.V - 2.x_m = 0$$
; c.à.d $x_m = \frac{C_1.V}{2}$

- La variation de masse : $|\Delta m| = |\Delta n(Cd)| \times M(Cd)$ ou bien $|\Delta m| = |n_f(Cd) - n_i(Cd)| \times M(Cd)$

Ce qui donne $|\Delta m| = |(n_i(Cd) - x_m) - n_i(Cd)| \times M(Cd) = x_m \times M(Cd)$

Finalement:
$$\left|\Delta m\right| = \frac{C_1 \cdot V}{2} \times M(Cd)$$
 A.N: $\left|\Delta m\right| = \frac{0.4 \times 0.25}{2} \times 112.4 = 5.62g$

<u>- Physique -</u>

LES TRANSFORMATIONS NUCLEAIRES

<u>1- Le bon choix est :</u> c) D'après la courbe d'Aston, pour les noyaux lourds, le degré de stabilisation diminue lorsque la masse du noyau augmente.

<u>2-Définition</u>: La radioactivité β^- est une réaction spontanée au cours de laquelle un noyau instable se désintègre en un nouveau noyau plus stable, en émettant des électrons (notés β^-).

Correction du sujet de l'examen national du Baccalauréat Session de rattrapage : 2017

page

3- Calcul de l'énergie libérée $|\Delta E|$:

L'équation de désintégration est : $^{60}_{27}Co \rightarrow ^{60}_{28}X + ^{0}_{-1}e$

On a:
$$|\Delta E| = \left| E_{\ell} \binom{60}{27} Co - E_{\ell} \binom{60}{28} X \right|$$
; or $E_{\ell} \binom{60}{27} Co = \left(27.m \binom{1}{1}p \right) + (60 - 27).m \binom{1}{0}n - m \binom{60}{27} Co) \right| c^2$ (2)

De la relation (2), on calcule d'abord $E_{\ell}({}^{60}_{27}Co)$:

$$E_{\ell}(^{60}_{27}Co) = (27 \times 1,00728 + 33 \times 1,00866 - 59,8523).u \times c^2 \approx 0,63 \times 931,949 \, MeV \approx 586,841 \, MeV$$

A.N:
$$|\Delta E| = |586,841 - 588,387| \approx 1,55 MeV$$

4- Montrons la relation $t_1 = \tau . \ln \left(\frac{N_A . m_0}{\tau M_a} \right)$:

- On sait que, d'après la loi de désintégration, l'activité : $a(t_1) = a_0.e^{-\lambda.t_1}$ avec $a_0 = \lambda.N_0 = \lambda.N_A.\frac{m_0}{M_A}$

On combine ces relations, on obtient :
$$a_1 = \frac{\lambda . N_A . m_0}{M} . e^{-\lambda . t_1}$$
 ou bien $\frac{M . a_1}{\lambda . N_A . m_0} = e^{-\lambda . t_1}$

Sachant que
$$\tau = \frac{1}{\lambda}$$
; donc : $\frac{\tau.M.a_1}{N_A.m_0} = e^{-t_1/\tau}$ alors $\ln\left(e^{t_1/\tau}\right) = \left(\frac{N_A.m_0}{\tau.M.a_1}\right)$

L'ELECTRICITE:

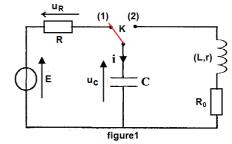
I - La Charge et la décharge d'un condensateur :

1- Charge d'un condensateur :

1-1- Equation différentielle que vérifie (intensité i(t) : D'après la figure ci-contre : $u_R + u_R = E$ (1)

En respectant les conventions : u = q et $u_R = R.i$

La relation (1) devient : $R.i + \frac{q}{C} = E$ (2) et E = Cte



En dérivant la relation (2), on aura :
$$R.\frac{di}{dt} + \frac{1}{C}.\frac{dq}{dt} = \frac{dE}{dt} = 0$$
 avec $i = \frac{dq}{dt}$

Finalement l'équation différentielle : $\frac{di}{dt} + \frac{1}{RC}$. i = 0

1-2- Détermination de R :

- Graphiquement la constante du temps est : $\tau = 1ms = 10^{-3} s$
- La constante du temps $\tau = RC$ donne : $R = \frac{\tau}{C}$ A.N : $R = \frac{10^{-3}}{2.5 \cdot 10^{-6}} = 400\Omega$

1-3- Détermination de Uo:

- A t = 0; graphiquement : $i(0) = 10mA = 10^{-2}A$
- A t = 0 ; l'équation différentielle devient: $u_R(0)+u_C(0)=E$; qui peut s'écrire : $R.i(0)+U_0=E$

D'où:
$$U_0 = E - R.i(0)$$
 A.N: $U_0 = 8 - 400 \times 10^{-2} = 4V$

page

1-4- * Recherche de l'expression de l'énergie électrique emmagasinée entre t =0 et t∞:

On a:
$$E_{e\ell} = E_{e\ell}(t \to \infty) - E_{e\ell}(t = 0) = \frac{1}{2}.C.\underbrace{\underbrace{u_c(t_\infty)}_{=E}}^2 - \frac{1}{2}.C.U_0^2$$
 ce qui donne: $\underbrace{E_{e\ell} = \frac{1}{2}.C.(E^2 - U_0^2)}_{=E}$

A.N:
$$E_{e\ell} = \frac{1}{2} \times 2,5.10^{-6} \times (8^2 - 4^2) = 6.10^{-5} J = 60 \mu J$$

2- Oscillations libres dans le circuit RLC :

2-1- Recherche de l'expression de l'énergie magnétique $E_m(t)$:

Soit une bobine de coefficient d'auto-inductance L, traversée par un courant d'intensité i(t) à l'instant t, et la tension entre ses bornes est $u_L(t)$: la puissance instantanée est alors : p(t) = u(t) . i(t)

Dans la convention "récepteur " la tension s'écrit : $u_L(t) = L \cdot \frac{di(t)}{c_L}$

Donc
$$p(t) = L \cdot \frac{di(t)}{dt} \times i(t) = \frac{L}{2} \cdot \frac{d}{dt} \left(i^2(t)\right)$$
 ou bien $p(t) = \frac{d}{dt} \left(\frac{1}{2} \cdot L \cdot i^2\right)$ (1)

En comparant la relation (1) avec la relation suivante $p(t) = \frac{d}{dt} (E_m(t))$ On en déduit : $E_m(t) = \frac{1}{2} \cdot L \cdot i^2(t)$

2-2- Recherche de l'expression $\frac{d}{dt}(E_{Tot}(t))$:

- L'énergie totale emmagasinée dans le circuit RLC est : $E_{Tot}(t) = E_{e\ell}(t) + E_m(t)$

Ou bien $E_{Tot}(t) = \frac{1}{2}.C.u_c^2(t) + \frac{1}{2}.L.i^2(t)$

- Dérivons cette expression $\frac{d}{dt}(E_{Total}(t)) = \frac{d}{dt}\left(\frac{1}{2}.C.u_c^2(t) + \frac{1}{2}.L.i^2(t)\right) = C.u_c(t).\frac{du_c(t)}{dt} + L.i(t).\frac{di(t)}{dt}$

Or
$$u_c = \frac{q}{C}$$
 et $\frac{du_c}{dt} = \frac{1}{C} \cdot \frac{dq}{dt} = \frac{i}{C}$ donc $\frac{d}{dt} \left(E_{Tot}(t) \right) = q(t) \cdot \frac{i(t)}{C} + L \cdot i(t) \cdot \frac{di(t)}{dt} = i(t) \cdot \left(\frac{q(t)}{C} + L \cdot \frac{di(t)}{dt} \right)$ (*)

Et d'après la loi d'additivité des tensions

$$u_c + u_b + u_{R_0} = 0 \implies \frac{q}{C} + r.i(t) + L.\frac{di(t)}{dt} + R_0.i(t) = 0 \implies \frac{q}{C} + L.\frac{di(t)}{dt} = -(r + R_0).i(t)$$

On remplace cette dernière expression dans la relation (*): $\frac{d}{dt}(E_{Tot}(t)) = i(t).[-(r+R_0).i(t)]$

Finalement on about it à l'expression finale : $\frac{dE_{Tot}(t)}{dt} = -(r + R_0)i^2(t)$

2-3- Détermination de l'énergie dissipée $|\Delta E|$ entre t=0 et t=t₁:

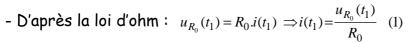
- L'énergie totale emmagasinée dans le circuit RLC à t = 0 est :

$$E_{Tot}(0) = \frac{1}{2}.C.\left(\underbrace{u_c(0)}_{=E}\right)^2 + \frac{1}{2}.L.\left(\underbrace{i(0)}_{=0}\right)^2 \implies E_{Tot}(0) = \frac{1}{2}.C.E^2$$

- L'énergie totale emmagasinée dans le circuit RLC à $t = t_1$ est :

$$E_{Tot}(t_1) = \frac{1}{2}.C.u_c^2(t_1) + \frac{1}{2}.L.i^2(t_1)$$
 (*)

page 6



- D'après la loi d'additivité des tensions :

$$u_c + u_b + u_{R_0} = 0 \implies u_c(t_1) + r.i(t_1) + L.\underbrace{\left(\frac{di(t)}{dt}\right)_{t=t_1}}_{= 0} + u_{R_0}(t_1) = 0$$

$$\Rightarrow u_c(t_1) = -r \cdot \frac{u_{R_0}(t_1)}{R_0} - u_{R_0}(t_1) \Rightarrow u_c(t_1) = -\left(\frac{r + R_0}{R_0}\right) u_{R_0}(t_1)$$
 (2)

- On remplace (1) et (2) dans (*), on obtient :

$$E_{Tot}(t_1) = \frac{1}{2} \cdot C \left(-\left(\frac{r + R_0}{R_0} \right) u_{R_0}(t_1) \right)^2 + \frac{1}{2} \cdot L \left(\frac{u_{R_0}(t_1)}{R_0} \right)^2 \Rightarrow E_{Tot}(t_1) = \frac{\left(u_{R_0}(t_1) \right)^2}{2 \cdot R_0^2} \cdot \left(L + C \cdot (r + R_0)^2 \right)$$

- Alors l'énergie dissipée $\left|\Delta E\right|$ entre t=0 et t=t_1 : $\left|\Delta E\right| = \left|E_{Tot}(t_1) - E_{Tot}(t=0)\right|$

$$\left| \Delta E \right| = \frac{\left| \left(u_{R_0}(t_1) \right)^2}{2.R_0^2} \cdot \left(L + C \cdot (r + R_0)^2 \right) - \frac{1}{2} \cdot C \cdot E^2 \right| \Rightarrow \left| \Delta E \right| = \frac{1}{2} \cdot \left| \frac{u_{R_0}^2}{R_0^2} \cdot \left(L + C \cdot (r + R_0)^2 \right) - C \cdot E^2 \right|$$

A.N:
$$|\Delta E| = \frac{1}{2} \times \left| \frac{0.44^2}{30^2} \times (0.5 + 2.5.10^{-6} \times (7 + 30)^2) - 2.5.10^{-6} \times 2.59.10^{-5} J \approx 2.59.10^{-5} J \approx 2.6 \mu J \right|$$

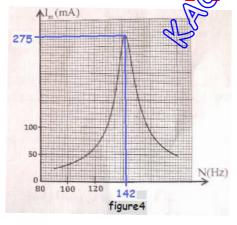
II - Oscillations forcées dans le circuit RLC :

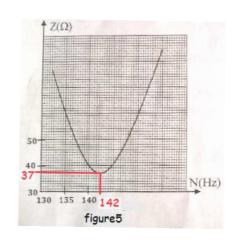
<u>1- Le bon choix est</u>: d) Expression du facteur de qualité $Q = \frac{N_0}{\Delta N}$

a) Le GBF joue le rôle de l'excitateur, b) (es oscillations étudiées sont forcées, et

c) φ représente le déphasage entre la tension u(t) et l'intensité du courant électrique i(t).

2- Détermination de la valeur de Um (Lovet ro:





- Figure 5 : à la résonance Z = 37Ω , et on sait que Z = R_{Tot} = r_0 + R_0

D'où : $r_0 = Z - R_0$ A.N : $r_0 = 37 - 30 = 7\Omega$

- Figure 4: à la résonance I_m = 275mA et N_0 = 142Hz

* On sait que $\underline{U_m} = Z \cdot \underline{I_m}$ A.N: $U_m = 37 \times 0.275 \approx 10V$

* On sait que $L_0.C.(2.\pi.N_0)^2=1$ d'où $L_0=\frac{1}{4.\pi^2N_0^2.C}$ A.N: $L_0=\frac{1}{4\times10\times142^2\times2,5.10^{-6}}\approx 0.5H$

2eme année Sciences Mathématiques

Correction du sujet de l'examen national du Baccalauréat Session de rattrapage : 2017

page 7

3- Détermination de la puissance électrique moyenne consommée à la résonance :

A la résonance : $P = R_{Tot}.I^2$ c'est la puissance consommée par les résistances du circuit.

Or
$$I = \frac{I_m}{\sqrt{2}}$$
 donc $P = \frac{1}{2}.(r_0 + R_0).I_m^2$ A.N: $P = \frac{1}{2}.(7 + 30).0,275^2 \approx 1,4W$

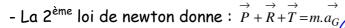
LA MECANIQUE:

<u>PARTIE I:</u> Etude du mouvement d'un oscillateur (corps solide - ressort)

1- Etude du mouvement de l'oscillateur mécanique en position horizontale :

1-1- Equation différentielle du mouvement que vérifie l'abscisse x(t) :

- Système à étudier : {corps(S)}
- Repère d'étude R (O ; \overrightarrow{i}) supposé galiléen ;
- Bilan des forces extérieures :
 - * Poids du corps (S): $\stackrel{\rightarrow}{P}$;
 - * Action du plan horizontal : \overrightarrow{R}
 - * Action du ressort : T



- Expressions:
$$P_x = 0$$
, $R_x = 0$, $T_x = -T = \frac{d^2x}{dt^2}$.

- La relation (*) devient : 0+0-k. x=0
- Finalement l'équation différentielle sera : $\frac{d^2x}{dt^2} + \frac{k}{m} \cdot x = 0$

1-2- Détermination de x_m et ϕ :

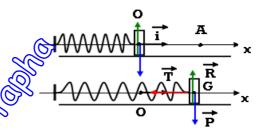
- * Détermination de x_m :
- La solution de l'équation différentielle est de la forme : $x = x_m \cos(\frac{2 \cdot \pi}{T_0} t + \varphi)$
- Graphiquement (figure 2): $a_{\text{max}} = 5m.s^{-2}$ et $T_0 = 0.4s$
- En dérivant successivement deux fois cette solution, on obtient l'expression de l'accélération de G le centre d'inertie du corps (S):

$$a_{x}(t) = -\left(\frac{2\pi}{T_{0}}\right)^{2} \cdot x_{m} \cos(\frac{2\pi}{T_{0}} t + \varphi) \text{ ou bien } a_{x}(t) = \left(\frac{2\pi}{T_{0}}\right)^{2} \cdot x_{m} \cos(\frac{2\pi}{T_{0}} t + \varphi + \pi) = a_{\max} \cdot \cos(\frac{2\pi}{T_{0}} t + \varphi + \pi)$$

Avec
$$a_{\text{max}} = \left(\frac{2.\pi}{T_0}\right)^2 . x_m \ alors \ x_m = \frac{a_{\text{max}} . T_0^2}{4.\pi^2}$$
 A.N: $x_m = \frac{5 \times 0.4^2}{4 \times 10} = 0.02m = 2cm$

* Détermination de ϕ :

A t=0 : graphiquement $a_x(0) = -a_{\max}$ et $a_x(0) = a_{\max}.\cos(\varphi + \pi)$ alors $\cos(\varphi + \pi) = -1$ ou bien $-\cos(\varphi) = -1 \Rightarrow \cos(\varphi) = 1$; finalement : $\varphi = 0$



page

8

2- Etude du mouvement de l'oscillateur mécanique en position verticale :

<u>2-1- Détermination de l'allongement</u> $\Delta \ell_0 = \ell - \ell_0$:

A l'équilibre : $\vec{T}_0 + \vec{P} = \vec{0}$, et par projection sur l'axe vertical Oz, on aura :

$$T_{0z} + P = 0 \text{ alors } k.\Delta\ell_0 + \textit{m.g} = 0 \text{ d'où } \Delta\ell_0 = -\frac{\textit{m.g}}{k}$$

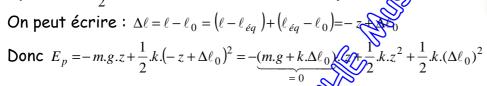
2-2- Montrons que $E_p = A \cdot z^2 + B$

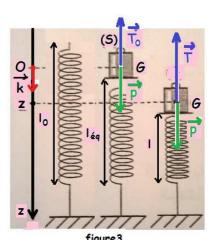
- L'énergie potentielle totale est : $E_p = E_{pp} + E_{pe}$ (*)
- L'énergie potentielle de pesanteur est : $E_{pp} = -m.g.z + C$
- Or en z=0 on a $E_{pp}=0$ donc ${\cal C}$ = 0 ; d'où $E_{pp}=-m.g.z$ (1)
- L'énergie potentielle élastique est : $E_{pe} = \frac{1}{2} .k.\Delta \ell^2 + C'$

Or lorsque $\Delta \ell = 0$ on a $E_{pe} = 0$ donc C ' = 0 ; d'où $E_{pe} = \frac{1}{2} .k. \Delta \ell^2$

- On porte (1) et (2) dans (*), on aura :

$$E_p = - \, m.g.z + \frac{1}{2}.k.\Delta\ell^2 \quad \text{, avec} \quad \Delta\ell = \ell - \ell_0 \quad et \quad z = \ell_{\acute{e}q} - \ell$$





Finalement on about tà l'expression : $\frac{B}{2} \cdot k \cdot z^2 + \frac{1}{2} \cdot k \cdot (\Delta \ell_0)^2$

2-3-1- Déterminons k et $\Delta \ell_0$:

- La figure 4 nous permet d'avoir E(z=0)=40mJ et Ep(z=2cm)=50mJ
- soit le système : $\begin{cases} \frac{1}{2} .k. (\Delta \ell_0)^2 = E_p(z) = 0) & (1) \\ \frac{1}{2} .k. z_m^2 + \frac{1}{2} .k. (\Delta \ell_0)^2 = E_p(z_m = 2cm) & (2) \end{cases}$
- Des relations (1) et (2) on peut écrire : $\frac{1}{2} .k. z_m^2 = E_p(z_m = 2cm) E_p(z_m = 0)$

Donc:
$$k = \frac{2}{2m^2} \times \left[E_p(z_m = 2cm) - E_p(z = 0) \right]$$
 A.N: $k = \frac{2}{0.02^2} \times \left[50.10^{-3} - 40.10^{-3} \right] = 50N.m^{-1}$

- De la relation (1): $\frac{1}{2} k.(\Delta \ell_0)^2 = E_p(\mathbf{z} = 0)$ on déduit $\Delta \ell_0 = -\sqrt{\frac{2.E_p(\mathbf{z} = 0)}{k}}$

A.N:
$$\Delta \ell_0 = -\sqrt{\frac{2 \times 40.10^{-3}}{50}} = -0.04m = -4cm$$

2-3-2- Détermination du travail de la force de rappel :

On a
$$E_p=E_{pp}+E_{pe}$$
 alors $\Delta E_p=\Delta E_{pp}+\Delta E_{pe}$ or $\Delta E_{pp}=-\underset{z_1\rightarrow z_2}{W}(\overrightarrow{P})=-m.g.(z_2-z_1)$ et $\Delta E_{pe}=-\underset{z_1\rightarrow z_2}{W}(\overrightarrow{T})=-m.g.(z_2-z_1)$

Correction du sujet de l'examen national du Baccalauréat Session de rattrapage : 2017

$$\text{Donc } \Delta \boldsymbol{E}_p = -m.g.(\boldsymbol{z}_2 - \boldsymbol{z}_1) - \underset{\boldsymbol{z}_1 \rightarrow \boldsymbol{z}_2}{W}(\overrightarrow{T}) \quad \text{d'où } \underset{\boldsymbol{z}_1 \rightarrow \boldsymbol{z}_2}{W}(\overrightarrow{T}) = -\Delta \boldsymbol{E}_p - m.g.(\boldsymbol{z}_2 - \boldsymbol{z}_1) \quad \text{or } -m.g = k.\Delta \ell_0$$

Finalement on arrive à l'expression :
$$W_{z_1 \to z_2}(\vec{T}) = -\Delta E_p + k.\Delta \ell_0.(z_2 - z_1)$$

Finalement on arrive à l'expression :
$$W(\vec{T}) = -\Delta E_p + k.\Delta \ell_0.(z_2 - z_1)$$

A.N: $W(\vec{T}) = -(50 - 45).10^{-3} + 50 \times (-4.10^{-2}) \times (1,4.10^{-2} - 0) = -3,3.10^{-2} J$

<u>PARTIE II</u>: Détermination du rayon de l'orbite de la lune autour de la terre 1- Définition :

Le référentiel géocentrique est un référentiel dont l'origine est le centre de la Terre et dont les trois axes pointent vers des étoiles lointaines qui apparaissent fixes.

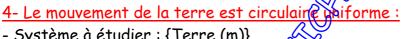
2- Le bon choix est : d) La vitesse d'une planète autour du soleil ne dépond pas de la masse de cette planète.

(a) Unité de la constante gravitationnelle N.m².kg-²; b) vecteur accélération est radial mais non tangentiel; c) Le vecteur accélération change direction durant le mouvement circulaire uniforme).

3- Expression vectorielle de la force de gravitati

Dans
$$(\vec{u}; \vec{n})$$
 on a:

$$\vec{F}_{S/T} = G.\frac{m.M}{R^2}.\vec{n}$$



- Système à étudier : {Terre (m)}
- Repère d'étude $(S, \overrightarrow{i}, \overrightarrow{j})$ supposé galileen ;
- Bilan des forces extérieures :

- La 2^{ème} loi de newton s'écrit :
$$\overrightarrow{F}_{S/T} = m.\overrightarrow{a_G}$$
 ou bien $m.\overrightarrow{a_G} = G.\frac{M.m}{R^2}.\overrightarrow{n}$ alors $\overrightarrow{a_G} = G.\frac{M}{R^2}.\overrightarrow{n}$

Ce qui prouve que le vecteur accélération est radial, et que sa composante tangentielle est nulle, $a_T = \frac{dv}{dt} = 0$: On en déduit que la vitesse est constante ou le mouvement est <u>uniforme</u>.

D'autre part $a_N = a_G \Rightarrow \frac{v^2}{R} = G.\frac{M}{R^2} \Rightarrow R = \frac{G.M}{v^2} = Cte$: On en déduit que le rayon est constant ou le

mouvement est circulaire.

Finalement le mouvement de la terre par rapport au soleil est circulaire uniforme.

5- La troisième loi de Kepler:
$$\frac{T^2}{R^3} = K = Cte$$

Puisque le mouvement de la Terre par rapport au Soleil est circulaire uniforme de période T;

alors:
$$T = \frac{2\pi R}{v}$$
 avec $v = \sqrt{\frac{G.M}{R}}$; ce qui donne $T = \frac{2\pi R}{\sqrt{\frac{G.M}{R}}}$ ou $T^2 = 4\pi^2 \cdot \frac{R^3}{G.M}$

2eme année Sciences Mathématiques

Correction du sujet de l'examen national du Baccalauréat Session de rattrapage : 2017

page 10

Finalement la loi de Kepler est : $\frac{T^2}{R^3} = \frac{4\pi^2}{G.M}$ (1)

6- * Expression du rayon orbital de la lune :

- On applique la loi de Kepler, pour le mouvement de la Lune par rapport à la Terre qui est circulaire uniforme de période T': $\frac{T'^2}{r^3} = \frac{4\pi^2}{G.m}$ (2)
- Des deux relations (1) et (2), on peut écrire : $\frac{T^2.M}{R^3} = \frac{4\pi^2}{G} = \frac{T^{\prime 2}.m}{r^3}$
- On en déduit l'expression du rayon : r=R. $\sqrt[3]{\left(\frac{T'}{T}\right)^2 \cdot \frac{m}{M}}$

* Calcul du rayon orbital de la trajectoire de la lune :

$$r = 1,49.10^8 \times \sqrt{\left(\frac{27,32}{365,25}\right)^2 \times \frac{1}{3,35.10^5}} \approx 3,81.10^5 \, km$$