

الامتحان الوطني الموحد للبكالوريا

لمسالك الكولية — خيار فرزة الدورة الاستدراكية 2018

RS30F

المركز الوطني للتقويم والامتحانات والتوجيه

4	مدة الإنجاز	الفيزياء والكيمياء	المادة
7	المعامل	شعبة العلوم الرياضية: "أ" و"ب" - خيار فرنسية	الشعبة أو المسلك

L'usage de la calculatrice scientifique non programmable est autorisé.

Le sujet comporte 4 exercices : un exercice de chimie et trois exercices de physique.

Chimie (7 points):

- Vitesse volumique d'une réaction ; réactions acido-basiques,
- Accumulateur Argent-Fer .

Physique (13 points):

- > Les ondes (2,25 points) :
- Ondes ultrasonores.

L'électricité (5,25 points):

- Dipôle RL et circuit LC,
- Modulation d'amplitude.

La mécanique (5,5 points):

- Mouvement d'un skieur,
- Mouvement d'un pendule simple.

0,75

0,5

الامتحان الوطني الموحد للركالوريا – الدورة الاستحراكية 2018 – الموضوع – مادة: الغيرياء والكيمياء — هعبة العلوم العلوم الرياضية "أ" و"بب"— حيار خرنسية

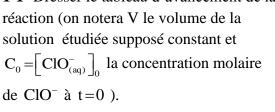
Chimie (7 points): Les deux parties sont indépendantes

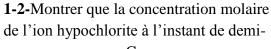
Partie I : Vitesse volumique d'une réaction - Réactions acido-basiques

L'eau de javel est un produit chimique d'utilisation courante. C'est un désinfectant très efficace contre les contaminations bactériennes et virales.

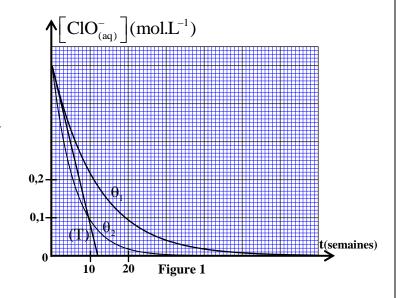
Le principe actif de l'eau de javel est dû à l'ion hypochlorite ClO⁻. Cet ion a à la fois un caractère oxydant et un caractère basique.

Dans cette partie de l'exercice on étudiera :


- la cinétique de la décomposition des ions hypochlorite ClO⁻;
- des réactions acido-basiques faisant intervenir le couple $HClO_{(aq)}/ClO_{(aq)}^-$.


1- Suivi de l'évolution temporelle de la concentration molaire effective de l'ion hypochlorite ClO

Durant la conservation de l'eau de javel, les ions hypochlorite ClO-contenus dans cette eau se décomposent selon l'équation de la réaction : $2ClO_{(aq)}^- \longrightarrow 2Cl_{(aq)}^- + O_{2(g)}$.


Dans des conditions expérimentales déterminées, on obtient les courbes de la figure1 représentant l'évolution de: $ClO_{(aq)}^{-}$ = f(t) à deux températures θ_1 et

1-1- Dresser le tableau d'avancement de la réaction (on notera V le volume de la solution étudiée supposé constant et $C_0 = \left[ClO_{(aq)}^- \right]_0$ la concentration molaire

réaction $t = t_{1/2}$ est $\frac{C_0}{2}$. Déduire alors

graphiquement $t_{1/2}$ pour l'expérience réalisée à la température θ_2 .

- 1-3- Trouver, pour la température θ_1 , la vitesse volumique de réaction à l'instant t=0 exprimée en $mol.L^{-1}$.semaine⁻¹ ((T) représente la tangente à la courbe au point d'abscisse t=0).
- **1-4-** Comparer θ_1 à θ_2 en justifiant la réponse. 0,25

2- Etude de quelques solutions aqueuses faisant intervenir le couple $HClO_{(aq)}/ClO_{(aq)}^-$

Données : - Toutes les mesures sont effectuées à 25°C ;

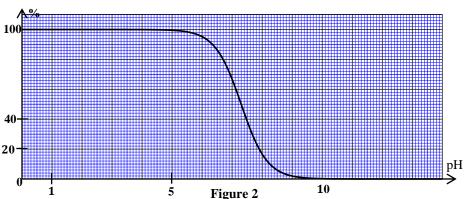
- Le produit ionique de l'eau : $K_e = 10^{-14}$;
- La constante d'acidité du couple $\mbox{HClO}_{\mbox{\tiny (aq)}}/\mbox{ClO}_{\mbox{\tiny (aq)}}^{-}\mbox{ est}: \mbox{K}_{\mbox{\tiny A}} = 5.10^{-8}$.

La mesure du pH d'une solution aqueuse(S) d'acide hypochloreux HClO de concentration molaire C et de volume V donne pH=5,5.

- 2-1- Ecrire l'équation chimique modélisant la réaction de l'acide hypochloreux avec l'eau. 0.5
- **2-2-**Trouver l'expression de la concentration molaire C en fonction du pH et de K_A. Calculer sa valeur. 0,75

RS30F

الامتحان الوطني الموحد للبكالوريا – الدورة الاستدراكية 2018 – الموضوع – مادة: الغيزياء والكيمياء – هعبة العلوم العلوم الرياضية "أ" و"بب" – خيار فرنسية


0.5

2-3-On définit la proportion de l'espèce basique ClO dans une solution par :

$$\alpha(\text{ClO}^{\scriptscriptstyle{-}}) = \frac{\left[\text{ClO}^{\scriptscriptstyle{-}}\right]_{\text{\'eq}}}{\left[\text{ClO}^{\scriptscriptstyle{-}}\right]_{\text{\'eq}} + \left[\text{HClO}\right]_{\text{\'eq}}} \,. \quad \text{Montrer que } \alpha(\text{ClO}^{\scriptscriptstyle{-}}) = \frac{K_A}{K_A + 10^{-\text{pH}}} \,.$$

- **2-4-** La courbe de la figure2 représente l'évolution en fonction du pH de la proportion de l'une des formes basique ou acide (exprimée en pourcentage) du couple $HClO_{(aq)}/ClO_{(aq)}^{-}$.
- 0,25 | **2-4-1-** A quelle forme du couple $HClO_{(aq)}/ClO_{(aq)}^-$ est associée cette courbe ?
- 0,5 2-4-2-En utilisant le graphe de la figure 2, identifier, en justifiant, l'espèce prédominante du couple

HClO_(aq) / ClO_(aq) dans la solution (S). **2-5-** On mélange un volume V_a d'une solution d'acide hypochloreux de concentration molaire C_a avec un volume V_b d'une solution d'hydroxyde de sodium

de fer

Lame

Pont salin

Figure 3

d'argent

 S_2

 $Na_{(aq)}^{^{+}}\!+\!HO_{(aq)}^{^{-}}\ de$

concentration molaire $C_b = C_a$. Le pH de la solution obtenue est pH = 7,3.

- 0,5 **2-5-1** Déterminer la valeur de la constante d'équilibre K associée à l'équation de la réaction qui se produit.
- 0,5 **2-5-2** -En se basant sur le graphe de la figure 2, calculer la valeur du rapport $\frac{[HClO]_{\acute{eq}}}{[ClO^-]_{\acute{eq}}}$. Que peut-on

en déduire ?

Partie II : Accumulateur Argent / Fer

Les accumulateurs sont des convertisseurs d'énergie. Contrairement aux piles, dont les réactifs se détruisent de manière irréversible au cours du fonctionnement, les réactifs des accumulateurs peuvent être régénérés par une opération de recharge.

Dans cet exercice on étudiera, d'une façon simplifiée, la décharge de l'accumulateur Argent/Fer.

On réalise l'accumulateur schématisé dans la figure 3: $-S_1$ est une solution aqueuse de sulfate de fer(II)

 $Fe_{(aq)}^{2+} + SO_{4(aq)}^{2-}$ de concentration molaire initiale

 $C_{_{\!1}}\!=\!0,2\,\text{mol.L}^{_{\!-1}}$ et de volume $\,V_{_{\!1}}\!=\!100\,\text{mL}\,$.

 $-S_2 \ \ \text{est une solution aqueuse de nitrate d'argent} \ \ Ag_{(aq)}^+ + NO_{3(aq)}^- \ \ \text{de concentration molaire initiale}$ $C_2 = C_1 \ \ \text{et de volume} \ \ V_2 = V_1 \ .$

Données: - Le faraday: $1F = 9,65.10^4 \text{ C.mol}^{-1}$,

- Les couples Ox/Red: $Ag_{(aq)}^{\scriptscriptstyle +}\,/\,Ag_{(s)}^{}$; $Fe_{(aq)}^{2\scriptscriptstyle +}\,/\,Fe_{(s)}^{}$

L'accumulateur est branché aux bornes d'une lampe à l'instant t=0. L'intensité du courant dans le circuit est considérée constante : $I=150\,\text{mA}$.

الصفحة	RS30F	الامتحان الوطني الموحد للبكالوريا – الحورة الاستحراكية 2018 – الموضوع		
8		– ماحة: الغيزياء والكيمياء — هعبة العلوم العلوم الرياضية "أ" و"بم"— خيار فرنسية		
0,5	1- La réaction spontanée est la réduction des ions argent et l'oxydation du fer. Ecrire l'équation bilan lors du fonctionnement de l'accumulateur.			
0,5	2- Montrer que la concentration $\left[Ag_{(aq)}^{+}\right]$ à un instant t de fonctionnement est :			
	$\left[Ag_{(aq)}^{+}\right]_{t} = 0,2-1,55.10^{-5}$.t avec t en seconde et la concentration en mol. L^{-1} (on considérera que les			
0,5	espèces métalliques sont en excès). 3- Déterminer la durée t _d de fonctionnement de l'accumulateur et la concentration finale des ions			
	fer(II) : [Fe	$\begin{bmatrix} 2+\\ \mathrm{aq} \end{bmatrix}_{\mathrm{f}}$.		
		: (13 points) 1 : Ondes ultrasonores (2,25 points)		
	1-Déterm On se pro longueur d	aphie est un outil du diagnostic médical. Sa technique utilise une sonde à ultrasons. ination de la célérité d'une onde ultrasonore dans l'air pose de déterminer la célérité d'une onde ultrasonore dans l'air à partir de la mesure de la l'onde λ d'un signal émis par la sonde d'un échographe de fréquence N=40kHz. Pour cela, un émetteur E produisant une onde périodique sinusoïdale de même fréquence que celle e.		
	Les récept d'une dista courbes so la distance	eurs R1 et R2 sont à égales distances de l'émetteur E. Lorsqu'on éloigne le récepteur R2 ance d (Figure1), les deux sinusoïdes visualisées sur l'oscilloscope se décalent. Les deux ent en phase à chaque fois que Oscilloscope Oscilloscope		
	multiple e	ntier n de λ avec $n \in \mathbb{N}^*$. Récepteur R1		
0,25 0,25	1-2- Chois	ir la longueur d'onde. Emetteur E Récepteur R2 ns suivantes :		
	a- Les ultr transportar b- Les ultr c- Les ultr	asons sont des ondes Int la matière. Tasons sont des ondes mécaniques. Tasons se propagent avec la même vitesse dans tous les milieux.		
0,5	d -Le domaine de la longueur d'onde des ondes ultrasonores est : $400\mathrm{nm} \le \lambda \le 800\mathrm{nm}$. 1-3- Dans l'expérience réalisée, on relève pour $n=12$, la distance $d=10,2$ cm . Déterminer la célérité de l'onde dans l'air.			
0,5	La sonde propagent différents La partie r par un sys La figure 2 l'échograp Lors de l' la sonde à	Ation à l'échographie : échographique utilisée est à la fois un émetteur et un récepteur. Lorsque les ondes se dans le corps humain, elles sont en partie réfléchies par les parois séparant deux milieux éfléchie de l'onde est reçue par la sonde puis analysée tème informatique. Sonde de l'échographe Coupe du ventre de la date t=0. L'onde est réfléchie au point M_1 et au point onde reçoit la première onde réfléchie à la date		
	$\int_{1}^{1} t = t = 80$	Ous et la deuxième à la date $t = t = 130 \text{ us}$		

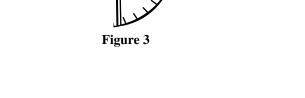
 $t\!=\!t_{_1}\!=\!80\mu s$ et la deuxième à la date $t\!=\!t_{_2}\!=\!130\mu s$.

Figure 2

Trouver l'épaisseur ℓ , du fœtus.

On admet que la vitesse des ondes ultrasonores dans le corps humain est $v_c = 1540 \, \text{m.s}^{-1}$.

3- Diffraction de l'onde ultrasonore dans l'air:


Le schéma expérimental représenté sur la figure 3 comporte :

- l'émetteur E émettant l'onde ultrasonore de fréquence N=40kHz,
- le récepteur R1 lié à un oscilloscope,
- une plaque métallique (P) percée d'une fente rectangulaire de largeur *a* très petite devant sa longueur,
- une feuille graduée permettant de mesurer les angles en degrés.

On déplace le récepteur R1dans le plan horizontal d'un angle θ sur l'arc de cercle de centre F et de rayon $r=40\,cm$ et on note pour chaque amplitude

 U_m de l'onde reçue par R1, l'angle θ correspondant.

- **3-1-** Comparer la longueur d'onde de l'onde incidente avec celle de l'onde diffractée.
- 0.5 | 3-2- On donne a=2,6cm.

 $E \square a \mathsf{T}$

Vers

l'oscilloscope

Trouver la distance du déplacement du récepteur pour observer le premier minimum d'amplitude U_m de la tension du récepteur.

Exercice 2 : Electricité (5,25 points)

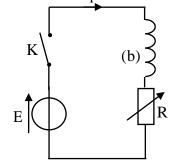
Les circuits des appareils électriques, utilisés dans plusieurs domaines de la vie courante, sont constitués de condensateurs, de bobines , de conducteurs ohmiques, de circuits intégrés ...

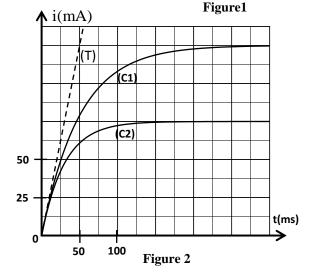
La première partie de cet exercice vise à étudier un dipôle (R,L) et un circuit (L,C), la deuxième partie a pour objectif l'étude de la modulation d'amplitude.

Partie I : Dipôle RL et circuit LC

1-Réponse d'un dipôle RL à un échelon de tension

On réalise le montage expérimental représenté sur la figure1 comprenant :


- un générateur de tension de f.e.m. E=1,5V;
- un conducteur ohmique de résistance R réglable ;
- une bobine (b) d'inductance L et de résistance r ;
- un interrupteur K.


A un instant choisi comme origine des dates (t=0), on ferme l'interrupteur K et on suit l'évolution de l'intensité du courant i(t) qui traverse le circuit à l'aide d'un système d'acquisition adéquat.

- **1-1-**Etablir l'équation différentielle vérifiée par i(t).
- **1-2-**La solution de cette équation différentielle s'écrit sous la forme $:i(t)=A.e^{-\alpha t}+B$, avec A, B et α des constantes.

Exprimer i(t) en fonction de t et des paramètres du circuit.

1-3- Les courbes (C1) et (C2) de la figure 2 représentent l'évolution de i(t) respectivement pour

0,25 0,5

0,75

RS30F

الامتحان الوطني الموحد للركالوريا – الدورة الاستحراكية 2018 – الموضوع – مادة: الغيرياء والكيمياء — هعبة العلوم العلوم الرياضية "أ" و"بب"— خيار خرنسية

 $R = R_1$ et $R = 2R_1$. La droite (T) étant la tangente à la courbe (C1) au point d'abscisse t = 0.

- **1-3-1-**Trouver R_1 et r.
- 0,5 **1-3-2**-Montrer que L=0,6H.

2- Etude d'un circuit LC

On utilise dans cette étude une bobine (b') d'inductance L=0,6H et de résistance négligeable.

Après avoir chargé, totalement, un condensateur de capacité C, sous une tension constante U_0 , on le branche aux bornes de la bobine (b') (Figure 3). La tension aux bornes du condensateur peut s'écrire sous la forme : $u_C(t) = U_0 \cdot \cos(2\pi f_0 t + \varphi)$ où f_0 est la fréquence propre du circuit.

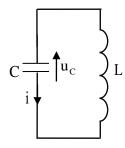
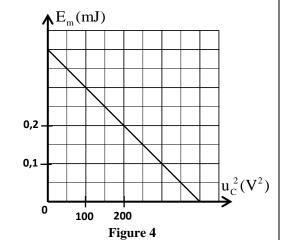


Figure 3


X

 \mathbf{E}_2

Figure 5

- **2-1-**Montrer que l'énergie électrique totale E, du circuit est constante. 0,25
 - 2-2-La courbe de la figure 4 représente la variation de l'énergie magnétique E_m emmagasinée dans la bobine en fonction du carré de la tension u_c aux bornes du condensateur : $E_m = f(u_C^2)$.

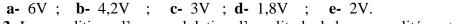
En se basant sur la courbe de la figure 4, déterminer la capacité C du condensateur et la tension U₀.

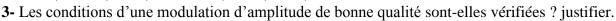
Partie II: Modulation d'amplitude

Afin de produire une onde hertzienne modulée en amplitude, on réalise le montage schématisé sur la figure 5, où X représente un circuit intégré multiplieur. Le coefficient du circuit multiplieur est k.

On applique à l'entrée E_1 la tension $u_1(t) = 6.\cos(4.10^5 \pi t)$ et à l'entrée E_2 la tension $u_2(t) = 2 \cdot \cos(8.10^3 \pi \cdot t) + 5$.

La tension de sortie u_s(t) obtenue est


$$u_s(t) = k.u_1(t).u_2(t) = 3[1+0, 4.\cos(8.10^3 \pi t)].\cos(4.10^5 \pi t)$$


Toutes les tensions sont exprimées en volt(V).

- 1- Déterminer la fréquence de l'onde porteuse.
- **2-** Choisir la réponse juste :

L'amplitude maximale de l'onde modulée est :

$$a = 6V + b = 4.2V + c = 3V + d = 1.8V + e = 2V$$

4- Exprimer u_s(t) sous forme de la somme de trois fonctions sinusoïdales et représenter le spectre de fréquences en choisissant l'échelle suivante : 1cm/V pour les amplitudes.

Rappel:
$$\cos(a).\cos(b) = \frac{1}{2} \left[\cos(a+b) + \cos(a-b)\right].$$

5- Le circuit bouchon, constitué par la bobine et le condensateur précédents, permet-il une bonne réception de l'onde modulée étudiée ?justifier la réponse.

0,5

0,25

0,5

0,5

0,75

Exercice 3 : Mécanique (5,5 points) Les deux parties I et II sont indépendantes

Partie I: Mouvement d'un skieur

Cette partie de l'exercice décrit un modèle très simplifié du mouvement du centre d'inertie G d'un skieur dans deux phases de son parcours :

0,25

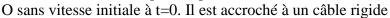
الامتحان الوطني الموحد للبكالوريا – الدورة الاستدراكية 2018 – الموضوع – مادة: الغيرياء والكيمياء – هعبة العلوم العلوم الرياضية "أ" و"بم" – حيار خرنسية

- -Première phase : Mouvement rectiligne du skieur sur un plan incliné ;
- -Deuxième phase : Chute libre du skieur dans le champ de pesanteur uniforme.

Données :- Masse du skieur : m=60kg;

-Intensité de l'accélération de la pesanteur : g=9,8 m.s⁻².

On néglige l'action de l'air.

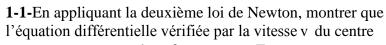

1-Première phase : mouvement du skieur sur un plan incliné.

On étudie le mouvement du centre d'inertie G du skieur dans le repère

 $(O; \vec{i}_1; \vec{j}_1)$ lié à un référentiel terrestre considéré galiléen(figure 1).

Pour atteindre le sommet S d'une piste (P) rectiligne inclinée d'un angle α =23° par rapport à

l'horizontale, le skieur part du point



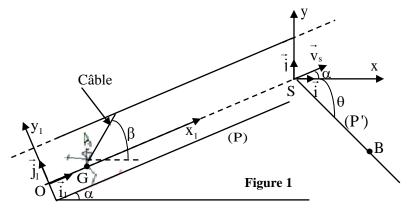
faisant un angle β =60° avec l'horizontale. Le câble exerce sur le skieur une force de traction \vec{F} constante dirigée selon la direction du câble(figure 1).

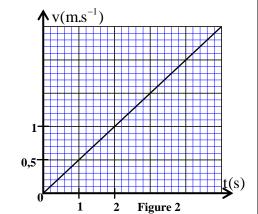
Durant toute cette phase, le skieur reste constamment en

contact avec le sol. On note \overrightarrow{R}_T et \overrightarrow{R}_N respectivement les composantes tangentielle et normale de l'action du plan incliné sur le skieur avec $\left\|\overrightarrow{R}_T\right\| = k \left\|\overrightarrow{R}_N\right\|$; k étant le coefficient de

frottement solide et $\|\overrightarrow{R}_T\| = f = 80 \text{ N}$.

d'inertie G s'écrit :
$$\frac{dv}{dt} + \frac{f}{m} + g.\sin\alpha - \frac{F}{m}\cos(\beta - \alpha) = 0$$
.


- **1-2-** La courbe de la figure 2 représente la variation de la vitesse v en fonction du temps.
- **1-2-1-**Déterminer graphiquement la valeur de l'accélération du mouvement de G.
- 0.25 | 1-2-2- Déduire l'intensité de la force de traction \vec{F} .
- 0,5 **1-3-**Déterminer la valeur de k.
 - 2-Deuxième phase :Phase du saut


Le skieur arrivant au sommet S de la piste (P), lâche le câble et quitte la piste à un instant choisi comme une nouvelle origine des dates avec une vitesse $\overrightarrow{v_S}$ faisant l'angle α avec l'horizontale et de valeur $v_S = 10 \, \text{m.s}^{-1}$ (figure 1).

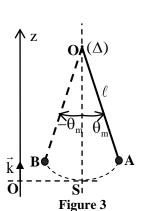
On étudie le mouvement du centre d'inertie G du skieur dans le repère $(S; \vec{i}; \vec{j})$ lié à un référentiel terrestre considéré galiléen.

Soit B la position de G sur la piste (P') qui est inclinée d'un angle θ =45° par rapport à l'horizontale (figure1).

- 0,5 **2-1**-Etablir les expressions numériques des équations horaires x(t) et y(t) du mouvement de chute libre de G dans le repère (S, \vec{i}, \vec{j}) .
- 0,5 | **2-2-**En déduire que l'équation de la trajectoire de G s'écrit : $y=-5,8.10^{-2}$ x² +0,42x.

RS30F

الامتحان الوطني الموحد للبكالوريا – الدورة الاستدراكية 2018 — الموضوع – مادة: الغيرياء والكيمياء — هعبة العلوم العلوم الرياضية "أ" و"بم"— حيار خرنسية


0,5 **2-3-**Trouver la longueur SB du saut.

Partie II: Mouvement d'un pendule simple

On considère un métronome que l'on modélise par un pendule simple formé par une tige rigide de masse négligeable et de longueur ℓ =24,8cm à laquelle est suspendue une petite bille de masse m=20g et de dimensions négligeables devant ℓ .

Quand on écarte le pendule de sa position d'équilibre d'un angle θ_m , il oscille dans un plan vertical entre les positions limites A et B autour d'un axe (Δ) horizontal passant par O (figure 3). Le métronome émet un signal sonore lorsque la bille arrive en A et il émet le même signal lors de son arrivée en B.

On repère la position du pendule par l'abscisse angulaire θ à un instant t.

Données : -Accélération de la pesanteur : g=9,81 m.s⁻² ;

- -Pour les oscillations de faible amplitude, on prend $\cos \theta \approx 1 \frac{\theta^2}{2}$; θ en radian;
- Le moment d'inertie du pendule par rapport à l'axe de rotation (Δ) est : $J_{\Delta} = m.\ell^2$.

Les frottements sont négligeables.

1-On écarte le pendule, de sa position d'équilibre stable, d'un angle petit $\theta_m = 8^\circ$ et on le libère de la position A à l'instant $t_0 = 0$ sans vitesse initiale.

On choisit comme origine de l'énergie potentielle de pesanteur le plan horizontal passant par la position de la bille au point S.

- 1-1-Trouver l'expression de l'énergie potentielle de pesanteur du pendule à un instant t en fonction de θ , ℓ , m et g.
- 0,25 | **1-2-**Déterminer la valeur de l'énergie mécanique du pendule.
- 1-3-Par une étude énergétique, établir l'équation différentielle du mouvement vérifiée par l'abscisse angulaire $\theta(t)$.
 - **2-**On note T_0 la période propre du pendule.
- 0,5 **2-1-** Donner l'expression de T_0 en fonction de g et ℓ et vérifier en utilisant les équations aux dimensions qu'elle est homogène à un temps.
- 2-2-Calculer la valeur de T_0 . Déduire le nombre de signaux sonores émis durant la durée $\Delta t = t t_0 = 10,25 \, \text{s} \quad \text{sachant que le premier signal sonore est émis à l'arrivée de la bille au point B pour la première fois.}$
- 3-Montrer, en se basant sur la conservation de l'énergie mécanique, que la vitesse angulaire $\theta(t)$ à un instant t s'exprime par la relation : $\dot{\theta}(t) = \pm \dot{\theta}_S \sqrt{1 \left(\frac{\theta}{\theta_m}\right)^2}$ avec $\dot{\theta}_S$ la vitesse angulaire au point S.